
Proving your Algorithms

Louis-Noël Pouchet
pouchet@cse.ohio-state.edu

Dept. of Computer Science and Engineering, the Ohio State University

September 2010

888.11



Proofs: Proving your Algorithms

Motivation

You need to prove your algorithms are correct:
I Power of the solution: Conjecture vs. Lemma!

I Building a proof may help find (and fix) mistakes

OSU 2



Proofs: Proving your Algorithms

Categories of Proofs

Disclaimer: this is not exhaustive!

I Correct / Complete / Terminate
I Simple in several situation, but may be very complex too...
I Based on pre/post condition of the algorithms

I Logic programming / Lambda calculus equivalence
I Rigourous
I Can be software-assisted (Coq)

OSU 3



Proofs: Proving your Algorithms

Simple Correctness Proof

Two main conditions:
I The algorithm is complete/correct: the post-condition is respected on all

possible inputs satisfying the pre-condition
I Precondition: a predicate I on the input data
I Postcondition: a predicate O on the output data
I Correctness: proving I⇒ O

I The algorithm terminates
I For all possible input, the algorithm exits

OSU 4



Example: bubblesort: Proving your Algorithms

Proving the bubblesort algorithm

Algorithm
Algorithm bubblesort
Input:
Integer[]: A
Output:
Integer[]: sorted by increasing order

for i← 1 to A.size - 1 do
for j← i + 1 to A.size do

if A[i] > A[j] then
tmp← A[i]
A[i] = A[j]
A[j] = tmp

end if
end for

end for

return A

OSU 5



Example: bubblesort: Proving your Algorithms

Loop Invariants

One possible scheme: prove an invariant is true for all iterations
1 Initialization: the invariant(s) is true prior to the first iteration of the loop

2 Maintenance: if the invariant is true for iteration n, it is true for iteration
n+1

3 Termination: when the loop terminates, the invariant is true on the
entire input

For bubblesort, the invariant is "At iteration i, the sub-array A[1..i] is
sorted and any element in A[i+1..A.size] is greater or equalt to any
element in A[1..i]"

OSU 6



Example: bubblesort: Proving your Algorithms

Initialization

For i = 0, the invariant is respected: the sub-array A[1..0] is sorted, trivially (it
contains no element).

OSU 7



Example: bubblesort: Proving your Algorithms

Maintenance

Given the sub-array A[1..n−1] sorted. Iteration n inserts at position n the
smallest of the remaining unsorted elements of A[n..A.size], as computed by
the j loop. A[1..n−1] contains only elements smaller than A[n..A.size], and
A[n] is smaller than any element in A[n+1..A.size], then A[1..n] is sorted and
the invariant is preserved.

OSU 8



Example: bubblesort: Proving your Algorithms

Termination

At the last iteration, A[1..A.size−1] is sorted, and all elements in
A[A.size−1..A.size] are larger than elements in A[1..A.size−1]. Hence
A[1..A.size] is sorted.

OSU 9



Another Example: Proving your Algorithms

Proving 101

I Proving the algorithm terminates (ie, exits) is required at least for
recursive algorithm

I For simple loop-based algorithms, the termination is often trivial (show
the loop bounds cannot increase infinitely)

I Finding invariants implies to carefuly write the input/output of the
algorithm

I The proof can be tedious, "simpler" proofs are acceptable

OSU 10



Another Example: Proving your Algorithms

Another completeness / correctness / termination
proof

Scheme:
I All cases are covered: completeness

I Show all possible inputs are processed by the algorithm, may be trivial

I For a given (arbitrary) case, it is correctly processed: correctness
I May need to cover individually all branches/cases of the algorithm
I For each case, show the processing generates the expected output

I in all cases, the algorithm exits: termination

OSU 11



Another Example: Proving your Algorithms

Example

Algorithm

BuildSearchSpace: Compute T
Input:
pdg: polyhedral dependence graph
Output:
T : the bounded space of candidate multidimensional schedules

d← 1
while pdg 6= /0 do

Td ← createUniversePolytope
for each dependence DR,S ∈ pdg do

WDR,S ← buildWeakLegalSchedules(DR,S)

Td ← Td ∩WDR,S
end for
for each dependence DR,S ∈ pdg do

SDR,S ← buildStrongLegalSchedules(DR,S)
if Td ∩SDR,S 6= /0 then

Td ← Td ∩SDR,S

pdg← pdg - DR,S
end if

end for
end do

OSU 12



Another Example: Proving your Algorithms

Proof (kind-a)

I Correctness: For each level d, Td is the contains only schedules such
that for all unsatisfied dependences, ΘS−ΘR ≥ 0. Hence the semantics
is preserved for all schedules. Since only satisfied dependence are
removed from the set, the lexicopositivity of dependence satisfaction is
respected.

I Completeness: trivial, no assumption is made on pdg and a
dependence can always be at least weakly satisfied if the input program
accepts at least one schedule

I Termination: At least one dependence can be solved per time
dimension, and the dependence graph of a program is finite.

OSU 13



Exercise: Proving your Algorithms

Exercise

Given the algorithm for the following problem:
Input:

I The starting address of a matrix of integer A of size n×n
I The starting address of a matrix of integer B of size n×n
I A function matrix(16x16) : getBlock(address : X, int : i, int : j) which

returns a sub-matrix (a block) of the matrix starting at address X, of size
16×16 whose first element is at position i, j

Ouput:
I An integer c, the sum of the diagonal elements of the product of A and B

Exercise: Prove it computes tr(A.B)

OSU 14


	Proofs
	Example: bubblesort
	Another Example
	Exercise

