
Transformation Selection for Good Vectorization

Louis-Noël Pouchet
pouchet@cse.ohio-state.edu

Dept. of Computer Science and Engineering, the Ohio State University

November 2010

888.11

Efficient Vectorization: Polyhedral Compilation Classes

The Problem of Efficient Vectorization

I A loop is SIMDizable if it is sync-free parallel
I If it is not, how to transform the code to make the inner loop(s)

SIMDizable?

I But how many vector instructions are required to load/store data?
I Stride of accesses is critical
I Best scenario: stride is {−1,0,1} for all accesses

OSU 2

Stride of Memory Accesses: Polyhedral Compilation Classes

Stride-1 Memory Access

I Stride-1 implies 1 vector load per 4 elements to be accessed
I Non stride-1 implies up to 4 vector load per 4 elements

I Focus on inner-most loops:
I stride: "distance" in memory of data accessed by two consecutive

iterations
I Array size must be constant (but may be parametric)

OSU 3

Stride of Memory Accesses: Polyhedral Compilation Classes

Example

Original code

Example

for (i = 0; i < N; ++i)
for (j = 0; j < N; ++j)
for (k = 0; k < N; ++k)
C[i][j] += A[i][k] * B[k][j];

Task 1: make the inner-most loop parallel

OSU 4

Stride of Memory Accesses: Polyhedral Compilation Classes

Example

Permute(k,i)

Example

for (k = 0; k < N; ++k)
for (j = 0; j < N; ++j)
for (i = 0; i < N; ++i)
C[i][j] += A[i][k] * B[k][j];

Strides (assume all arrays are of size N×N):

C: C[i][j] stride is N

A: A[i][k] stride is N

B: B[k][j] stride is 0

OSU 5

Stride of Memory Accesses: Polyhedral Compilation Classes

Example

Permute(k,i) + PermuteLayout(C) + PermuteLayout(A)

Example

for (k = 0; k < N; ++k)
for (j = 0; j < N; ++j)
for (i = 0; i < N; ++i)
C[j][i] += A[k][i] * B[k][j];

Strides (assume all arrays are of size N×N):

C: C[i][j] stride is 1

A: A[i][k] stride is 1

B: B[k][j] stride is 0

OSU 6

Stride of Memory Accesses: Polyhedral Compilation Classes

Example

Permute(k,i) + Permute(i’,j)

Example

for (k = 0; k < N; ++k)
for (i = 0; i < N; ++i)
for (j = 0; j < N; ++j)
C[i][j] += A[i][k] * B[k][j];

Strides (assume all arrays are of size N×N):

C: C[i][j] stride is 1

A: A[i][k] stride is 0

B: B[k][j] stride is 1

OSU 7

Stride of Memory Accesses: Polyhedral Compilation Classes

Stride-1 with Data Layout Permutation

I Simply transpose the array in memory
I Requires to transpose the access functions to this array

I Pros:
I Always legal transformation (1-to-1 mapping)
I Allow to work individually on each array

I Cons:
I All memory references to this array must be transposed in the entire

program (may kill stride-1 somewhere else)
I Array declaration not necessarily accessible

OSU 8

Stride of Memory Accesses: Polyhedral Compilation Classes

Stride-1 with Loop Permutation

I Permute loops in a loop nest (aka interchange)
I The access function gets permuted to mirror the loop permutation

change

I Pros:
I Allow to work locally on an inner-most loop
I Flexible: different permutations possible for different loops

I Cons:
I Not always legal!
I Spans at once all references in the inner-most loop

OSU 9

Stride of Memory Accesses: Polyhedral Compilation Classes

A (Slightly) More Complex Example

Original code

Example

for (k = 0; k < N; ++k)
for (i = 0; i < N; ++i)
for (j = 0; j < N; ++j)
C[i][j] += A[i][k] * B[k][j] / D[j][i];

for (j = 0; j < N / 2; ++j)
D[k][j] += F[k][j];

Strides (assume all arrays are of size N×N):

C: C[i][j] stride is 1

A: A[i][k] stride is 0

B: B[k][j] stride is 1

D: D[j][i] stride is N

D: D[k][j] stride is 1
OSU 10

Stride of Memory Accesses: Polyhedral Compilation Classes

A (Slightly) More Complex Example

PermuteLayout(D)

Example

for (k = 0; k < N; ++k)
for (i = 0; i < N; ++i)
for (j = 0; j < N; ++j)
C[i][j] += A[i][k] * B[k][j] / D[i][j];

for (j = 0; j < N / 5; ++j)
D[j][k] += F[k][j];

Strides (assume all arrays are of size N×N):

C: C[i][j] stride is 1

A: A[i][k] stride is 0

B: B[k][j] stride is 1

D: D[j][i] stride is 1

D: D[k][j] stride is N
OSU 11

Stride of Memory Accesses: Polyhedral Compilation Classes

Observations From the Example

I Is it profitable to permute the layout of D?
I Maybe: there are 5 times less accesses to D[j][k]
I Depends on the architecture / vector implementation

I Is this loop order the best?

I Is there any loop transformation which could help here?
I What about loop distribution?
I Impact of distribution-enabling transformations?

We need a systematic cost model!

OSU 12

Cost Model for Vectorization: Polyhedral Compilation Classes

Cost Model for Vectorization

Trifunovic et al., PACT’09
I Search space: loop permutations
I In a nutshell:

I To each possible permutation corresponds transformed access functions
I Compute a vectorization cost for all possibilities
I Select the best one, implement the corresponding permutation

I Cost model:
I Naive execution time estimate
I Non stride-1: needs multiple loads per vector register
I Stride-0: needs splat
I Stride-1: 1 load per vector register

OSU 13

Cost Model for Vectorization: Polyhedral Compilation Classes

Cost Estimation

Definition (Cost estimation for a polyhedral statement)

cost(DS,Θ
S) =

|DS|
VF

.∑cvector_numerical_ops

+ ∑
m∈WS

(
ca +

|DS|
VF

.(cvectstore)
)

+ ∑
m∈RS

(
ca +

|DS|
VF

.(cvectload + cs)
)

Where VF is the vector length, and the different c are vector costs.

OSU 14

Cost Model for Vectorization: Polyhedral Compilation Classes

Cost of Non Stride-1 Loads

I It is a function of the stride of the access, noted δdv

I Captured in the cs term:

cs =

 c0 : δdv = 0
0 : δdv = 1
δdv .c1 +(δdv −1).c2 : δdv > 1


I c1 is the cost of a vector load
I c2 is the cost of a vector extract (odd or even)

OSU 15

Cost Model for Vectorization: Polyhedral Compilation Classes

Different Cost Components

I Scheduling-invariant metrics:
I ca: cost of unaligned operations
I cvector_numerical_ops: cost of vector numerical operations
I cvectstore, cvectload : cost of an individual load/store op

I Scheduling-sensitive metrics:
I cS (aka stride load factor)

I Code generation-dependent metrics:
I None here

OSU 16

Cost Model for Vectorization: Polyhedral Compilation Classes

Observations

Limitations:
I What about reuse?

I What about data locality estimation?

I What about coupling with other transformations?
I How to integrate fusion/distribution?
I What about complementary transformations for fusion?
I A real research problem here :-)

OSU 17

	Efficient Vectorization
	Stride of Memory Accesses
	Cost Model for Vectorization

