
CS 151 C Winter Quarter 2004
Design of Digital Systems Final Project

Prof. Leon Alkalai

Adaptive Differential Pulse Code Modulation
Decoder/Encoder Hardware Implementation

Adam Kaplan
Serge Baltayan

March 23rd, 2004

ABSTRACT

Our project is the implementation of an Adaptive Differential Pulse Code Modulation
(ADPCM) encoder/decoder pair in reconfigurable logic. We selected this particular
project due to its algorithmic complexity, as well as its influence upon voice encryption
techniques of cellular technology. This project is interesting because it encompasses
some of the fundamental techniques of hardware design. It requires interfacing with
memory, local buffering (of reads and writes), compression based on an algorithm which
performs prediction, and real-time sound encoding. Our implementation assumes that the
sound data exists in RAM before execution begins, but it could trivially be extended to
operate on RAM as the sound is being stored (this feature would require synchronization
logic and it was decided that this was beyond the scope of a single quarter project). The
project was challenging because it uses many capabilities of the Xilinx XSV-50 board,
including audio and RAM interfaces. It was also extremely educational for us, as we
started with a high-level algorithmic specification, then took it down to a behavioral
state-machine specification, and further into a full RTL specification (with separate
processes for next-state, output function, and data path). Additionally, we learned that
debugging at the RTL level is extremely difficult, and that it is more efficient to debug
the high-level specification and re-implement the RTL code. Finally, we learned that
debugging at the hardware level is much more time-consuming and difficult than
debugging software (even when software simulation of the component has succeeded).

March 23, 2004
Adam Kaplan

Serge Baltayan

CS 151 C, Winter 2004 Final Project
ADPCM Decoder/Encoder Hardware Implementation

1. Introduction

The DVI Adaptive Differential Pulse Code Modulation (ADPCM) algorithm was
first described in an IMA recommendation on audio formats and conversion practices [1].
ADPCM is a transformation that encodes 16-bit audio as 4 bits (a 4:1 compression ratio).
In order to achieve this level of compression, the algorithm maintains an adaptive value
predictor, which uses the distance between previous samples to store the most likely
value of the next sample. The difference between samples is quantized down to a new
sample using an adaptive step-size. The algorithm in [1] suggests using a table to adapt
this step-size to the analyzed data. ADPCM has become widely used and adapted, and a
variant of the algorithm performs voice encoding on cellular phones (allowing minimal
data to be sent across the wireless network and increasing throughput).

Figure 1 demonstrates the high-level flow of the ADPCM encoder algorithm. The
current sample analyzed is compared to the previous predictor value. This difference is
compared to the current stepsize value, and a 4-bit encoded data value is produced
(storing the delta between this sample and the predicted sample value). Simultaneously,
the predictor and stepsize are updated to reflect new sample information. The decoder
works in exactly the opposite way, unfolding the deltas into sample data and predictor
values.

In this project, Adam Kaplan performed the coding of the ADPCM decoder (from
high level algorithm to behavioral code) and the RTL partitioning and design of the
decoder. Additionally, Adam simulated the high-level and low-level implementations to
verify functionality. Serge Baltayan performed the coding of the ADPCM encoder (from
high-level description to behavioral VHDL), and partitioned this into an RTL component.
Serge designed and debugged both implementations of his encoder, and simulated the
high-level and low-level components to verify functionality.

4-bit
encoded

data

Current
16-bit

Sample Compare
To

Current
Stepsize

Adjust
Prediction &

Stepsize
Difference

Current
Prediction

FIGURE 1. ADPCM Encoder High-Level Algorithmic Flow

 2

CS 151 C, Winter 2004 Final Project
ADPCM Decoder/Encoder Hardware Implementation

Together, Serge and Adam worked on integrating the encoder and decoder
designs into the Queensland audio project [2], allowing the decoder and encoder to
execute on the same recorded audio data. (Since the encoder, decoder, and audio drivers
together were too big for one XCV50 FPGA configuration, they were split into two
configurations. One configuration included the player, recorder, and decoder, whereas
the other configuration included the player, recorder, and encoder.)

2. System Level Description

FIGURE 2. High-Level Decoder/Recorder/Player module

The device named Audiotop in Figures 2 and 5 is the highest level black box
system in our design. Due to capacity constraints, Audiotop is divided into two
configurations: one that consists of an encoder/recorder/player combination, and the other
consisting of a decoder/recorder/player combination. It basically receives direct inputs
from the user (human) via the I/O features of the Virtex XSV50 boards. The device
possesses the classic ability to restart each process via a “reset” button and bring the
device to an idle status. The device needs to be able to receive raw wave data in order to
perform the encoding and decoding processes. When the “recorder” button is pressed, the
raw sound is transmitted via an external analog signal into the 3.5mm audio input
terminal on the Virtex board. The recorder next stores this analog audio as digital data in
the memory banks using the ADC feature of the board. After the sound data is available
on memory, the ADPCM compression encoding technique may be executed via the

 3

CS 151 C, Winter 2004 Final Project
ADPCM Decoder/Encoder Hardware Implementation

“encode” button, converting the digital sound data in the upper half of RAM into encoded
data one-fourth the size of the original in the lower half of RAM (since the algorithm
utilizes a 4:1 compression ratio). The encoding may then be reversed by utilizing the
decompression algorithm which converts the ADPCM compressed format in lower
memory back into the raw sound data in higher memory. This may be performed via the
“decoder” button. After the data has been decoded, the final data present in the memory
banks will be the digital wav audio, playable via the “player” button. The player reads the
digital audio from the Virtex memory banks and drives it to the 3.5mm output jack via a
DAC.
The implementation further consists of output signals utilized in order to provide a
stronger level of communication between user and device. Various indicator lights were
used in order to display critical statuses of the device. During recording, a flashing
indicator light is dedicated to notifying the user that the board’s memory is entirely used
and full, thus no longer allowing any more raw audio data to be input. Two other
indicator lights are also used in aiding the user: one light to show the board busy during
the encoding/decoding processes, and another to show that the device has completed the
current process. Other I/O which are not in communication with the user of the device are
the datastreams between the application and the RAM of the board.

FIGURE 3. Decoder functionality assisting Multiplexer

 The decodemux which will be described in the RTL section is shown in Figure 3.

 4

CS 151 C, Winter 2004 Final Project
ADPCM Decoder/Encoder Hardware Implementation

FIGURE 4. Decoder (decompression) module

FIGURE 5. High-Level Encoder/Recorder/Player module

 5

CS 151 C, Winter 2004 Final Project
ADPCM Decoder/Encoder Hardware Implementation

FIGURE 6. Encoder functionality assisting Multiplexer

 The ADPCM encoder shown in Figure 5 behaves as follows. As every 16-bit
sample is read from input, a difference is taken between that sample and the previous
value prediction. This difference, along with the current quantization step (read from a
stepsize table) is used to generate the next value prediction, the next index into the
stepsize table, and the encoded difference (named delta). Delta is a 4-bit value, which is
the ADPCM encoding of the 16-bit sample.
 The ADPCM decoder is much simpler than the encoder. Every 4-bit delta value
is read from the input, and used as an index into the index table. The index is
incremented by the index table value, and used to read the stepsize table to find the next
stepsize. Meanwhile, the value prediction (of the sample) is reconstructed using the
current stepsize along with the delta value. The sample’s value prediction, a 16 bit value,
is output as the decoded sound data.

 6

CS 151 C, Winter 2004 Final Project
ADPCM Decoder/Encoder Hardware Implementation

FIGURE 7. Encoder (compression) module

DECODER BEHAVIORAL PSUEDO-VHDL

architecture Behavioral of decoder is
 signal valpred : integer;
 signal stepsize_index : integer;
begin

process (clk)
 type indextabletype is array (15 downto 0) of integer;
 type stepsizetabletype is array (88 downto 0) of integer;
 variable indextable : indextabletype;
 variable stepsizetable : stepsizetabletype;
 variable outp : std_logic_vector(15999 downto 0);
 variable inp : std_logic_vector(3999 downto 0);
 variable sign : bit;
 variable delta : std_logic_vector (3 downto 0);
 variable step : std_logic_vector (15 downto 0);
 variable Vvalpred : integer;
 variable vpdiff : integer;
 variable Vindex : integer;
 variable inputbuffer : std_logic_vector (7 downto 0);
 variable bufferstep : bit;

 begin

 if (clk'EVENT AND clk = '1' and decode = '1') then
 inputbuffer := "00000000";
 indextable := (-1, -1, -1, -1, 2, 4, 6, 8,
 -1, -1, -1, -1, 2, 4, 6, 8);

 stepsizetable := (7, 8, 9, 10, 11, 12, 13, 14, 16, 17,

 19, 21, 23, 25, 28, 31, 34, 37, 41, 45,
 50, 55, 60, 66, 73, 80, 88, 97, 107, 118,
 130, 143, 157, 173, 190, 209, 230, 253, 279,

 7

CS 151 C, Winter 2004 Final Project
ADPCM Decoder/Encoder Hardware Implementation

307, 337, 371, 408, 449, 494, 544, 598, 658,
724, 796, 876, 963, 1060, 1166, 1282, 1411,
1552, 1707, 1878, 2066, 2272, 2499, 2749, 3024,
3327, 3660, 4026, 4428, 4871, 5358, 5894, 6484,
7132, 7845, 8630, 9493, 10442, 11487, 12635,
13899, 15289, 16818, 18500, 20350, 22385, 24623,
27086, 29794, 32767);

 inp := indata;
 Vvalpred := valpred;
 Vindex := stepsize_index;

 step := conv_std_logic_vector(stepsizetable(Vindex), 16);
 bufferstep := '0';

 for each 4 bit value in memory
 -- step 1: get the delta value

 if (bufferstep = '1') then
 delta := inputbuffer(3 downto 0);
 else
 inputbuffer := inp (7 downto 0);
 inp := to_stdlogicvector(to_bitvector(inp) srl 8);
 delta := inputbuffer(7 downto 4);
 end if;

 bufferstep := NOT(bufferstep);

 -- step 2: find new index value

 Vindex := Vindex + indextable(conv_integer(delta));
 if (Vindex < 0) then Vindex := 0; end if;
 if (Vindex > 88) then Vindex := 88; end if;

 -- step 3: separate sign and magnitude

 if (delta(3) = '1') then
 sign := '1';
 else
 sign := '0';
 end if;

 delta := '0' & delta(2 downto 0);

 -- step 4: compute difference and new predicted value

 vpdiff := conv_integer("000" & step(15 downto 3));

 if (delta(2) = '1') then
 vpdiff := vpdiff + conv_integer(step);
 end if;
 if (delta(1) = '1') then
 vpdiff := vpdiff + conv_integer("0" & step(15 downto 1));
 end if;
 if (delta(0) = '1') then
 vpdiff := vpdiff + conv_integer("00" & step(15 downto 2));
 end if;

 if (sign = '1') then
 Vvalpred := Vvalpred - vpdiff;
 else
 Vvalpred := Vvalpred + vpdiff;
 end if;

 -- step 5: clamp output value

 if (Vvalpred > 32767) then Vvalpred := 32767; end if;
 if (Vvalpred < -32768) then Vvalpred := -32768; end if;

 -- step 6: update step value

 8

CS 151 C, Winter 2004 Final Project
ADPCM Decoder/Encoder Hardware Implementation

 step := conv_std_logic_vector(stepsizetable(Vindex), 16);

 -- step 7: output value
 outp(15 downto 0) := conv_std_logic_vector(Vvalpred, 16);
 outp := to_stdlogicvector(to_bitvector(outp) rol 16);
 -- buffer and write out 16 bits at a time

 end loop;
 -- write any leftover 16-bit data (flush buffer)
 valpred <= Vvalpred;
 stepsize_index <= Vindex;
 outdata <= outp;

 end if;

end process;
end Behavioral;

ENCODER BEHAVIORAL PSEUDO-VHDL

architecture Behavioral of encoder is
 signal valpred : integer;
 signal stepsize_index : integer;
begin
 process (clk)
 type indextabletype is array (15 downto 0) of integer;
 type stepsizetabletype is array (88 downto 0) of integer;
 variable indextable : indextabletype;
 variable stepsizetable : stepsizetabletype;

 variable inp : std_logic_vector(15999 downto 0); -- port sending in the
wave
 variable outp : std_logic_vector(3999 downto 0); -- port outputting the
ADPCM data
 variable val : std_logic_vector(15 downto 0);
 variable sign : bit;
 variable delta : std_logic_vector(3 downto 0);
 variable diff : integer;
 variable step : std_logic_vector(15 downto 0);
 variable Vvalpred : integer;
 variable vpdiff : integer;
 variable Vindex : integer;
 variable outputbuffer : std_logic_vector (7 downto 0);
 variable bufferstep : bit;

 begin

 if (clk'EVENT AND clk = '1' and encode = '1') then
 outputbuffer := "00000000";
 indextable := (-1, -1, -1, -1, 2, 4, 6, 8,
 -1, -1, -1, -1, 2, 4, 6, 8);

 stepsizetable := (7, 8, 9, 10, 11, 12, 13, 14, 16, 17,

 19, 21, 23, 25, 28, 31, 34, 37, 41, 45,
 50, 55, 60, 66, 73, 80, 88, 97, 107, 118,
 130, 143, 157, 173, 190, 209, 230, 253, 279,

307, 337, 371, 408, 449, 494, 544, 598, 658,
724, 796, 876, 963, 1060, 1166, 1282, 1411,
1552, 1707, 1878, 2066, 2272, 2499, 2749, 3024,
3327, 3660, 4026, 4428, 4871, 5358, 5894, 6484,
7132, 7845, 8630, 9493, 10442, 11487, 12635,
13899, 15289, 16818, 18500, 20350, 22385, 24623,
27086, 29794, 32767);

 9

CS 151 C, Winter 2004 Final Project
ADPCM Decoder/Encoder Hardware Implementation

 inp := indata;
 Vvalpred := valpred;
 Vindex := stepsize_index;

 step := conv_std_logic_vector(stepsizetable(Vindex), 16);
 bufferstep := '1';

 for each 16 bit value inp in memory

 val := inp(15 downto 0);
 inp := to_stdlogicvector(to_bitvector(inp) srl 16);

 -- step 1: compute difference with previous value

 diff := conv_integer(val) - Vvalpred;
 if (diff < 0) then
 sign := '1';
 else
 sign := '0';
 end if;

 if (sign = '1') then
 diff := 0 - diff ;
 end if;

 -- step 2: divide and clamp

 delta := "0000";
 vpdiff := conv_integer("0000" & step(15 downto 3));

 if (diff >= conv_integer(step)) then
 delta := "0100";
 diff := diff - conv_integer(step);
 vpdiff := vpdiff + conv_integer(step);
 end if;
 --
 step := ("0" & step(15 downto 1));
 if (diff >= conv_integer(step)) then
 delta(1) := '1';
 diff := diff - conv_integer(step);
 vpdiff := vpdiff + conv_integer(step);
 end if;
 --
 step := ("0" & step(15 downto 1));
 if (diff >= conv_integer(step)) then
 delta(0) := '1';
 vpdiff := vpdiff + conv_integer(step);
 end if;
 --

 --

 -- step 3: update previous value

 if (sign = '1') then
 Vvalpred := Vvalpred - vpdiff;
 else
 Vvalpred := Vvalpred + vpdiff;
 end if;

 -- step 4: clamp previous value to 16 bits

 if (Vvalpred > 32767) then
 Vvalpred := 32767; end if;
 if (Vvalpred < -32768) then
 Vvalpred := -32768; end if;

 -- step 5: assemble value, update index and step values

 10

CS 151 C, Winter 2004 Final Project
ADPCM Decoder/Encoder Hardware Implementation

 if(sign = '1') then
 delta(3) := '1';
 end if;

 Vindex := Vindex + indextable(conv_integer(delta));
 if (Vindex < 0) then
 Vindex := 0; end if;
 if (Vindex > 88) then
 Vindex := 88; end if;
 step := conv_std_logic_vector(stepsizetable(Vindex), 16);

 -- step 6: output value

 if (bufferstep = '1') then
 outputbuffer := (delta(3 downto 0) & "0000");
 else

outp(7 downto 0) := ("0000" & delta(3 downto 0)) or
outputbuffer;

 outp := to_stdlogicvector(to_bitvector(outp) rol 8);
 end if;
 bufferstep := NOT(bufferstep);

 end loop;

 -- output last step if needed
 if (bufferstep = '1') then
 outp(7 downto 0) := outputbuffer;
 end if;

 valpred <= Vvalpred;
 stepsize_index <= Vindex;
 outdata <= outp;
 -- write out 8 bits at a time (buffer fills 4 bits @time)
 end if;
 end process;
end Behavioral;

3. RTL Description

3.1 Encoder/Decoder MUX RTL
These are simple collections of multiplexers, which specify which components
will be speaking to RAM at a given time. The decoder and encoder MUXes are
controlled by the one-bit decoder and encoder signals, respectively. In the decoder
MUX design, if the decode signal is high (the decode button is pressed) RAM
switches from being in player/recorder control to being hooked up to the decoder
unit. This functionality is identical for the encoder MUX. Please refer to the
Appendix for the brief implementation of these components.

3.2 Encoder RTL
The encoder is partitioned into a controller and datapath, which share signals as
shown in Figure 8. The control signals sent by the controller to the datapath are 35
bits, which include 25 bits driving register loads and arithmetic, and 10 bits used
to drive selectors for five muxes.

The state diagram for the encoder controller is shown in Figure 9. The reason for
the number of states is due to the number of dependent assignments between
clock cycles. Although much of this could have been done in combinational logic,

 11

CS 151 C, Winter 2004 Final Project
ADPCM Decoder/Encoder Hardware Implementation

we attempted to accommodate the 50 MHz clock requirement of the Queensland
player [2]. Therefore, we decided on a tradeoff of more states (and more cycles)
with a smaller cycle time. Only one register assignment is permitted per variable
per state. The state numbers come from the ADPCM reference implementation
[4]. Where we have broken up states into multiple cycles, we use letters to
indicate sequential control transfer. (For instance, step 2 has been broken into
st2a, st2b, st2c, and st2/3.)

controls 35

32index

32valpred

16step

32diff

localinaddr(18)

3

inhalf

bufferstep

sign

Data Path

Controller

FIGURE 8. ADPCM Encoder RTL Partitioning

The encoder datapath, as shown in Figure 10 as well as the RTL implementation
below, is comprised of several registers (index (integer), valpred (integer),
inputbuffer (32 bit), index table (16 integers), step (16 bit), inhalf (1 bit),
bufferstep (3 bits), localinaddress (19 bits), localoutaddress (19 bits), val (16 bits),
sign (1 bit), diff (integer), delta (4 bits), and vpdiff (integer)). Additionally, two
tables exist in the FPGA: index table and stepsize table. The total storage size is
3631 bits. Twelve muxes are needed to control which values get loaded into
registers. Seven adders and three counters (one counter for each incrementing
memory pointer, and one for the bufferstep) are needed to perform the RTL
operations. In this design, some space is saved via the use of alignment to
represent shifted values (rather than using actual shift operators).

The full RTL implementation of the ADPCM encoder follows:

 12

CS 151 C, Winter 2004 Final Project
ADPCM Decoder/Encoder Hardware Implementation

 sign = ‘0’

canwrite

‘canwrite

finished w/RAM

need input

need input

buffered input

buffered input

out
buffer
full

sign = ‘1’

canread

‘canread

 encode

 ‘encode

flushbuf

Fix buf

Up addr

write

waitwrite

st5c/6

st5b st5a

st4

st2/3

st2c

st2b st2aNeg diffst1bst1a Post ram

read

Wait read

init

swait

FIGURE 9. ADPCM Encoder Controller State Machine

 13

CS 151 C, Winter 2004 Final Project
ADPCM Decoder/Encoder Hardware Implementation

FIGURE 10a. ADPCM Encoder Datapath

 14

CS 151 C, Winter 2004 Final Project
ADPCM Decoder/Encoder Hardware Implementation

FIGURE 10b. ADPCM Encoder Datapath (cont)

 15

CS 151 C, Winter 2004 Final Project
ADPCM Decoder/Encoder Hardware Implementation

FIGURE 10c. ADPCM Encoder Datapath (cont)

 16

CS 151 C, Winter 2004 Final Project
ADPCM Decoder/Encoder Hardware Implementation

architecture rtl of encoder is

 --------buffer signals-------------
 signal inputbuffer : std_logic_vector(31 downto 0);
 signal outputbuffer: std_logic_vector(31 downto 0);

 -------types-----------------------

type stateType is (swait, init, waitread, readstate, postram, step1a, step1b,
negativediff, step2a, step2b, step2c, step2if3withstep3, step4, step5a, step5b,
step5cwithstep6, waitwrite, stepwrite, upaddr, fixbuf, flushbuf);

type indextabletype is array (15 downto 0) of integer;

type stepsizetabletype is array (88 downto 0) of integer;

 type diffseltype is (valvalpred, negdiff, substep);
 type deltaseltype is (clear, three, two, one, zero);
 type vpdiffseltype is (shiftstep, incstep);
 type indexseltype is (inc, low, high);
 type valpredseltype is (high, low, plus, minus);
 ------ctrl signals-----------------

 signal state : stateType := swait;
 signal nextstate : stateType := swait;

 signal clrindex : bit;
 signal clrvalpred : bit;
 signal clrinputbuffer : bit;
 signal clroutputbuffer : bit;
 signal readstep : bit;
 signal clrbufferstep : bit;
 signal clrinhalf : bit;
 signal resetlocalinaddress : bit;
 signal resetlocaloutaddress : bit;
 signal loadinaddr : bit;
 signal loadinputbuffer : bit;
 signal incinhalf : bit;
 signal seldiff : diffseltype;
 signal loaddiff : bit;
 signal setsign : bit;
 signal clrsign : bit;
 signal seldelta : deltaseltype;
 signal loaddelta : bit;
 signal selvpdiff : vpdiffseltype;
 signal loadvpdiff : bit;
 signal selvalpred : valpredseltype;
 signal loadvalpred : bit;
 signal rotatestep : bit;
 signal selindex : indexseltype;
 signal loadindex : bit;
 signal loadoutputbuffer : bit;
 signal loadoutaddr : bit;
 signal loadoutdata : bit;
 signal incrementoutaddr : bit;
 signal fixoutputbuffer : bit;

 -------var signals-----------------

 signal indextable : indextabletype;
 signal stepsizetable : stepsizetabletype;

 signal sign : bit;
 signal delta : std_logic_vector (3 downto 0);
 signal step : std_logic_vector (15 downto 0);
 signal valpred : integer;
 signal index : integer;
 signal bufferstep : bit_vector(2 downto 0);
 signal val : std_logic_vector (15 downto 0);

 17

CS 151 C, Winter 2004 Final Project
ADPCM Decoder/Encoder Hardware Implementation

 signal diff : integer;
 signal vpdiff : integer;
 signal localinaddr : std_logic_vector(18 downto 0);
 signal localoutaddr : std_logic_vector(18 downto 0);
 signal inhalf : bit;

begin

 indextable <= (-1, -1, -1, -1, 2, 4, 6, 8,
 -1, -1, -1, -1, 2, 4, 6, 8);

 stepsizetable <= (7, 8, 9, 10, 11, 12, 13, 14, 16, 17,
 19, 21, 23, 25, 28, 31, 34, 37, 41, 45,
 50, 55, 60, 66, 73, 80, 88, 97, 107, 118,
 130, 143, 157, 173, 190, 209, 230, 253, 279, 307,
 337, 371, 408, 449, 494, 544, 598, 658, 724, 796,
 876, 963, 1060, 1166, 1282, 1411, 1552, 1707, 1878, 2066,
 2272, 2499, 2749, 3024, 3327, 3660, 4026, 4428, 4871, 5358,
 5894, 6484, 7132, 7845, 8630, 9493, 10442, 11487, 12635, 13899,
 15289, 16818, 18500, 20350, 22385, 24623, 27086, 29794, 32767);

 --
 -----------change our state ----------------------------
 --
 process (clk, reset, nextstate)
 begin
 if (reset = '0') then
 state <= swait;
 elsif (clk'EVENT and clk = '1') then
 state <= nextstate;
 end if;
 end process;

 --
 ------------------next state----------------------------

 controller_ns : process (state) -- fills in next state
 begin
 case state is
 when swait => doingstuff <= '1';
 if (encode = '0') then
 nextstate <= swait;
 else
 nextstate <= init;
 end if;
 when init => nextstate <= waitread;
 when waitread => if (canread = '1') then

nextstate <= readstate;
 end if;

 when readstate => nextstate <= postram;
 when postram => nextstate <= step1a;
 when step1a => nextstate <= step1b;
 when step1b => if (sign = '0') then
 nextstate <= step2a;
 else
 nextstate <= negativediff;
 end if;
 when negativediff => nextstate <= step2a;
 when step2a => nextstate <= step2b;
 when step2b => nextstate <= step2c;
 when step2c => nextstate <= step2if3withstep3;
 when step2if3withstep3 => nextstate <= step4;
 when step4 => nextstate <= step5a;
 when step5a => nextstate <= step5b;
 when step5b => nextstate <= step5cwithstep6;
 when step5cwithstep6 =>
 if (bufferstep = "111") then
 nextstate <= waitwrite;
 else
 if (inhalf = '0') then

 18

CS 151 C, Winter 2004 Final Project
ADPCM Decoder/Encoder Hardware Implementation

 nextstate <= waitread;
 else
 nextstate <= postram;
 end if;
 end if;
 when waitwrite => if (canwrite = '1') then

nextstate <= stepwrite;
 end if;

 when stepwrite => nextstate <= upaddr;
 when upaddr =>
 if (localinaddr(18) = '0') then
 nextstate <= fixbuf;
 else
 if (inhalf = '0') then
 nextstate <= waitread;
 else
 nextstate <= postram;
 end if;
 end if;
 when fixbuf =>
 if(bufferstep = "000") then
 nextstate <= swait;
 encodedone <= '1';
 else
 nextstate <= flushbuf;
 end if;
 when flushbuf => nextstate <= swait;
 encodedone <= '1';
 end case;
 end process;

 ---------------------output function-----------------------

 controller_op : process (state)

 variable vclrindex : bit;
 variable vclrvalpred : bit;
 variable vclrinputbuffer : bit;
 variable vclroutputbuffer : bit;
 variable vreadstep : bit;
 variable vclrbufferstep : bit;
 variable vclrinhalf : bit;
 variable vresetlocalinaddress : bit;
 variable vresetlocaloutaddress : bit;
 variable vloadinaddr : bit;
 variable vloadinputbuffer : bit;
 variable vincinhalf : bit;
 variable vloaddiff : bit;
 variable vsetsign : bit;
 variable vclrsign : bit;
 variable vloaddelta : bit;
 variable vloadvpdiff : bit;
 variable vloadvalpred : bit;
 variable vrotatestep : bit;
 variable vloadindex : bit;
 variable vloadoutputbuffer : bit;
 variable vloadoutaddr : bit;
 variable vloadoutdata : bit;
 variable vincrementoutaddr : bit;
 variable vwrite : std_logic;
 variable vread : std_logic;
 variable vfixoutputbuffer : bit;

 begin

 vwrite := '0';
 vread := '0';

 case state is

 19

CS 151 C, Winter 2004 Final Project
ADPCM Decoder/Encoder Hardware Implementation

 when swait =>
 vclrindex := '1';
 vclrvalpred := '1';

 when init =>
 vclrinputbuffer := '1';
 vclroutputbuffer := '1';
 vreadstep := '1';
 vclrbufferstep := '1';
 vclrinhalf := '1';
 vresetlocalinaddress := '1';
 vresetlocaloutaddress := '1';

 when waitread => -- nothing

 when readstate =>
 vread := '1';
 vloadinaddr := '1';
 vloadinputbuffer := '1';

 when postram => vincinhalf := '1';

 when step1a =>

seldiff <= valvalpred;
 vloaddiff := '1';

 when step1b =>
 if (diff < 0) then
 vsetsign := '1';
 else
 vclrsign := '1';
 end if;

 when negativediff =>

seldiff <= negdiff;
 vloaddiff := '1';

 when step2a =>
 seldelta <= clear;
 vloaddelta := '1';
 selvpdiff <= shiftstep;
 vloadvpdiff := '1';

 when step2b =>
 if (diff >= conv_integer(step)) then
 seldelta <= two;
 vloaddelta := '1';
 seldiff <= substep;
 vloaddiff := '1';
 selvpdiff <= incstep;
 vloadvpdiff := '1';
 end if;
 vrotatestep := '1';

 when step2c =>
 if (diff >= conv_integer(step)) then
 seldelta <= one;
 vloaddelta := '1';
 seldiff <= substep;
 vloaddiff := '1';
 selvpdiff <= incstep;
 vloadvpdiff := '1';
 end if;
 vrotatestep := '1';

 when step2if3withstep3 =>
 if (diff >= conv_integer(step)) then
 seldelta <= zero;

 20

CS 151 C, Winter 2004 Final Project
ADPCM Decoder/Encoder Hardware Implementation

 vloaddelta := '1';
 selvpdiff <= incstep;
 vloadvpdiff := '1';
 end if;
 if(sign ='1') then
 selvalpred <= minus;
 vloadvalpred := '1';
 else
 selvalpred <= plus;
 vloadvalpred := '1';
 end if;

 when step4 =>
 if(valpred > 32767) then
 selvalpred <= high;
 vloadvalpred := '1';
 elsif (valpred < -32768) then
 selvalpred <= low;
 vloadvalpred := '1';
 end if;

 when step5a =>
 if(sign = '1') then
 seldelta <= three;
 vloaddelta := '1';
 end if;
 selindex <= inc;
 vloadindex := '1';

 when step5b =>
 if (index < 0) then
 selindex <= low;
 vloadindex := '1';
 elsif (index > 88) then
 selindex <= high;
 vloadindex := '1';
 end if;

 when step5cwithstep6 =>
 vreadstep := '1';
 vloadoutputbuffer := '1';

 when waitwrite => -- nothing

 when stepwrite =>
 vwrite := '1';
 vloadoutaddr := '1';
 vloadoutdata := '1';

 when upaddr => vincrementoutaddr := '1';

 when fixbuf => vfixoutputbuffer := '1';

 when flushbuf =>
 vwrite := '1';
 vloadoutaddr := '1';
 vloadoutdata := '1';

 end case;

 clrindex <= vclrindex;
 clrvalpred <= vclrvalpred;
 clrinputbuffer <= vclrinputbuffer;
 clroutputbuffer <= vclroutputbuffer;
 readstep <= vreadstep;
 clrbufferstep <= vclrbufferstep;
 clrinhalf <= vclrinhalf;
 resetlocalinaddress <= vresetlocalinaddress;
 resetlocaloutaddress <= vresetlocaloutaddress;
 loadinaddr <= vloadinaddr;
 loadinputbuffer <= vloadinputbuffer;

 21

CS 151 C, Winter 2004 Final Project
ADPCM Decoder/Encoder Hardware Implementation

 incinhalf <= vincinhalf;
 loaddiff <= vloaddiff;
 setsign <= vsetsign;
 clrsign <= vclrsign;
 loaddelta <= vloaddelta;
 loadvpdiff <= vloadvpdiff;
 loadvalpred <= vloadvalpred;
 rotatestep <= vrotatestep;
 loadindex <= vloadindex;
 loadoutputbuffer <= vloadoutputbuffer;
 loadoutaddr <= vloadoutaddr;
 loadoutdata <= vloadoutdata;
 incrementoutaddr <= vincrementoutaddr;
 write <= vwrite;
 read <= vread;

 end process;

 -----------------------datapath--------------------------------
 datapath : process (clk)

 begin

 if (clk'EVENT and clk = '1') then
 if (clrindex = '1') then
 index <= 0;
 end if;

 if (clrvalpred = '1') then
 valpred <= 0;
 end if;

 if (clrinputbuffer = '1') then
 inputbuffer <= (others => '0');
 end if;

 if (clroutputbuffer = '1') then
 outputbuffer <= (others => '0');
 end if;

 if (readstep = '1') then
 step <= conv_std_logic_vector(stepsizetable(index), 16);
 end if;

 if (clrbufferstep = '1') then
 bufferstep <= "000";
 end if;

 if (clrinhalf = '0') then
 inhalf <= '0';
 end if;

 if (resetlocalinaddress = '1') then
 localinaddr(17 downto 0) <= (others => '0');
 localinaddr(18) <= '1';
 end if;

 if (resetlocaloutaddress = '1') then
 localoutaddr <= (others => '0');
 end if;

 if (loadinaddr = '1') then
 inaddr <= localinaddr;
 end if;

 if (loadinputbuffer = '1') then
 inputbuffer <= indata;
 end if;

 22

CS 151 C, Winter 2004 Final Project
ADPCM Decoder/Encoder Hardware Implementation

 if (incinhalf = '1') then
 case inhalf is
 when '0' =>
 -- inhalf is high
 -- have just read
 inhalf <= '1';
 val <= inputbuffer(31 downto 16);
 when '1' =>
 -- input half is low
 -- will read next time
 localinaddr <= localinaddr + 1;
 inhalf <= '0';
 val <= inputbuffer(15 downto 0);
 end case;
 end if;

 if (setsign = '1') then
 sign <= '1';
 end if;

 if (clrsign = '1') then
 sign <= '0';
 end if;

 if (loaddiff = '1') then
 case seldiff is
 when valvalpred =>

diff <= conv_integer(val) - valpred;
 when negdiff =>

diff <= 0 - diff;
 when substep =>

diff <= diff - conv_integer(step);
 end case;
 end if;

 if (loaddelta = '1') then
 case seldelta is
 when clear => delta <= "0000";
 when three => delta(3) <= '1';
 when two => delta(2) <= '1';
 when one => delta(1) <= '1';
 when zero => delta(0) <= '1';
 end case;
 end if;

 if (loadvpdiff = '1') then
 case selvpdiff is
 when shiftstep =>

vpdiff <= conv_integer("0000" & step(15 downto 3));
 when incstep =>

vpdiff <= vpdiff + conv_integer(step);
 end case;
 end if;

 if (rotatestep = '1') then
 step <= ("0" & step(15 downto 1));
 end if;

 if (loadvalpred = '1') then
 case selvalpred is
 when high => valpred <= 32767;
 when low => valpred <= -32768;
 when minus => valpred <= valpred - vpdiff;
 when plus => valpred <= valpred + vpdiff;
 end case;
 end if;

 if (loadindex = '1') then
 case selindex is
 when inc =>

 23

CS 151 C, Winter 2004 Final Project
ADPCM Decoder/Encoder Hardware Implementation

index <= index +
 indextable(conv_integer(delta));

 when low => index <= 0;
 when high => index <= 88;
 end case;
 end if;

 if (loadoutputbuffer = '1') then
 case bufferstep is
 when "000" =>
 bufferstep <= "001";
 outputbuffer(31 downto 28) <= delta;
 when "001" =>
 bufferstep <= "010";
 outputbuffer(27 downto 24) <= delta;
 when "010" =>
 bufferstep <= "011";
 outputbuffer(23 downto 20) <= delta;
 when "011" =>
 bufferstep <= "100";
 outputbuffer(19 downto 16) <= delta;
 when "100" =>
 bufferstep <= "101";
 outputbuffer(15 downto 12) <= delta;
 when "101" =>
 bufferstep <= "110";
 outputbuffer(11 downto 8) <= delta;
 when "110" =>
 bufferstep <= "111";
 outputbuffer(7 downto 4) <= delta;
 when "111" =>
 bufferstep <= "000";
 outputbuffer(3 downto 0) <= delta;
 end case;
 end if;

 if (fixoutputbuffer = '1') then
 case bufferstep is
 when "000" => -- do nothing...no more to write
 when "001" =>
 outputbuffer(27 downto 0) <= (others => '0');
 when "010" =>
 outputbuffer(23 downto 0) <= (others => '0');
 when "011" =>
 outputbuffer(19 downto 0) <= (others => '0');
 when "100" =>
 outputbuffer(15 downto 0) <= (others => '0');
 when "101" =>
 outputbuffer(11 downto 0) <= (others => '0');
 when "110" =>
 outputbuffer(7 downto 0) <= (others => '0');
 when "111" =>
 outputbuffer(3 downto 0) <= (others => '0');
 end case;
 end if;

 if (loadoutaddr = '1') then
 outaddr <= localoutaddr;
 end if;

 if (loadoutdata = '1') then
 outdata <= outputbuffer;
 end if;

 if (incrementoutaddr = '1') then
 localoutaddr <= localoutaddr + 1;
 end if;
 end if;
 end process;

end rtl;

 24

CS 151 C, W
ADPCM Decoder/Encoder H

Controller

Data Pat

delta(3)

bufferstep

outhalf

3

localoutaddr(18)

valpred 32

index 32

23 controls

FIGURE 11. ADPCM Decoder RTL Partitioning

3.3 Decoder RTL
The decoder is likewise partitioned into a controller and da
signals as shown in Figure 11. The control signals sent by
datapath are 23 bits, which include 19 bits driving register l
and 4 bits used to drive selectors for two (2-bit selected) muxe

The state diagram for the encoder controller is shown in Fig
has vastly fewer states than the encoder, as fewer comparison
are needed. Again, we leaned toward more clock cycles with
In this state machine, there was no need to further decom
reference implementation. In fact, in some cases (e.g. step
combined via extracted parallelism.
The decoder datapath, shown in Figure 13, is comprised mos
like the encoder datapath. We store the stepsize and inde
integers, respectively), and in registers we store index (intege
input and output buffers (32 bits each), step (16 bits), buff
input and output addresses (19 bits each), delta (4 bits), sign (
bit). The total in-FPGA storage size in this case is 3551 bits,
the table storage. Seven multiplexers are needed to alterna
registers, and an additional three multiplexers are required for

 25
inter 2004 Final Project
ardware Implementation

h

tapath, which share
the controller to the
oads and arithmetic,
s.

ure 12. The decoder
-based computations
a smaller cycle time.
pose steps from the
5/6) states could be

tly of storage, much
x tables (89 and 16
r), valpred (integer),
erstep (3 bits), local
1 bit), and outhalf (1
 dominated again by
te storage into these
 selection along the

CS 151 C, Winter 2004 Final Project
ADPCM Decoder/Encoder Hardware Implementation

d

6

done
w/RAM

canwrite

‘canwrite

have more
input

have more
input

need more
input

need more
input

outbuffer
full

canread ‘canread

decode ‘decode

upaddr

write

waitwrite

step
7

step5/

step4

fixindex

incindexpostramstep1rea

waitread

init

swai
t

FIGURE 12. ADPCM Decoder Controller State Machine

computation path of valpred. Three counters are used to store values which are
incremented by 1 during computation, and six adders are needed for arithmetic
operations in the RTL implementation. Additionally, one comparator is used (to
compare the bufferstep in order to conditionally increment the input address).

The full RTL implementation of the ADPCM encoder follows:

 26

CS 151 C, Winter 2004 Final Project
ADPCM Decoder/Encoder Hardware Implementation

FIGURE 13a. ADPCM Decoder Datapath

 27

CS 151 C, Winter 2004 Final Project
ADPCM Decoder/Encoder Hardware Implementation

FIGURE 13b. ADPCM Decoder Datapath (cont)

 28

CS 151 C, Winter 2004 Final Project
ADPCM Decoder/Encoder Hardware Implementation

architecture rtl of decoder is
 ----buffer signals---
 signal inputbuffer : std_logic_vector(31 downto 0);
 signal outputbuffer : std_logic_vector(31 downto 0);

 -------types---------

type stateType is (swait, init, waitread, step1read, postram, incindex,
fixindexstep3, step4, step56, step7, waitwrite, stepwrite, upaddr);

 type indextabletype is array (15 downto 0) of integer;
 type stepsizetabletype is array (88 downto 0) of integer;

 type indexseltype is (high, low, increment);
 type valpredseltype is (high, low, outoperation);

 ------ctrl signals---
 signal state : stateType := swait;
 signal nextstate : stateType := swait;

 signal clrindex : bit;
 signal clrvalpred : bit;

signal clrinputbuffer : bit;
signal readstep : bit;

 signal clrbufferstep : bit;
 signal resetlocalinaddress : bit;
 signal resetlocaloutaddress : bit;
 signal loadinaddr : bit;
 signal loadinputbuffer : bit;
 signal incbufferstep : bit;
 signal selindex : indexseltype;
 signal loadindex : bit;
 signal setsign : bit;
 signal clrsign : bit;
 signal clrdelta3 : bit;
 signal selvalpred : valpredseltype;
 signal loadvalpred : bit;
 signal loadoutputbuffer : bit;
 signal loadoutaddr : bit;
 signal loadoutdata : bit;
 signal incrementoutaddr : bit;

 -------var signals---
 signal indextable : indextabletype;
 signal stepsizetable : stepsizetabletype;
 signal sign : bit;
 signal delta : std_logic_vector (3 downto 0);
 signal step : std_logic_vector (15 downto 0);
 signal valpred : integer;
 signal index : integer;
 signal bufferstep : bit_vector(2 downto 0);
 signal localinaddr : std_logic_vector(18 downto 0);
 signal localoutaddr : std_logic_vector(18 downto 0);
 signal outhalf : bit;

begin

 indextable <= (-1, -1, -1, -1, 2, 4, 6, 8,
 -1, -1, -1, -1, 2, 4, 6, 8);

 stepsizetable <= (7, 8, 9, 10, 11, 12, 13, 14, 16, 17,
 19, 21, 23, 25, 28, 31, 34, 37, 41, 45,
 50, 55, 60, 66, 73, 80, 88, 97, 107, 118,
 130, 143, 157, 173, 190, 209, 230, 253, 279, 307,
 337, 371, 408, 449, 494, 544, 598, 658, 724, 796,
 876, 963, 1060, 1166, 1282, 1411, 1552, 1707, 1878, 2066,
 2272, 2499, 2749, 3024, 3327, 3660, 4026, 4428, 4871, 5358,
 5894, 6484, 7132, 7845, 8630, 9493, 10442, 11487, 12635, 13899,
 15289, 16818, 18500, 20350, 22385, 24623, 27086, 29794, 32767);

 29

CS 151 C, Winter 2004 Final Project
ADPCM Decoder/Encoder Hardware Implementation

 process (clk, reset, nextstate)
 begin
 if (reset = '0') then
 state <= swait;
 elsif (clk'EVENT and clk = '1') then
 state <= nextstate;
 end if;
 end process;

 ------------------next state----------------------------
 controller_ns : process (state)
 -- fills in next state

 begin
 decodedone <= '0';
 case state is
 when swait => doingstuff <= '1';
 if (decode = '0') then
 nextstate <= swait;
 else
 nextstate <= init;
 end if;
 when init => nextstate <= waitread;
 when waitread =>

if (canread = '1') then
nextstate <= step1read;

end if;
 when step1read => nextstate <= postram;
 when postram => nextstate <= incindex;
 when incindex => nextstate <= fixindexstep3;
 when fixindexstep3 => nextstate <= step4;
 when step4 => nextstate <= step56;
 when step56 => nextstate <= step7;
 when step7 =>
 if(outhalf = '1') then
 if (bufferstep = "000") then
 nextstate <= waitread;
 else
 nextstate <= postram;
 end if;
 else
 nextstate <= waitwrite;
 end if;
 when waitwrite => if(canwrite = '1') then

nextstate <= stepwrite;
 end if;

 when stepwrite => nextstate <= upaddr;
 when upaddr => if (localoutaddr(18) = '0') then
 nextstate <= swait;
 decodedone <= '1';
 else
 if (bufferstep = "000") then
 nextstate <= waitread;
 else
 nextstate <= postram;
 end if;
 end if;
 end case;
 end process;

 ---------------output function -------------
 controller_op : process (state)

 variable vclrindex : bit;
 variable vclrvalpred : bit;
 variable vclrinputbuffer : bit;
 variable vreadstep : bit;
 variable vclrbufferstep : bit;
 variable vresetlocalinaddress : bit;

 30

CS 151 C, Winter 2004 Final Project
ADPCM Decoder/Encoder Hardware Implementation

variable vresetlocaloutaddress : bit;
 variable vloadinaddr : bit;
 variable vloadinputbuffer : bit;
 variable vincbufferstep : bit;
 variable vloadindex : bit;

variable vsetsign : bit;
 variable vclrsign : bit;

variable vclrdelta3 : bit;
variable vloadvalpred : bit;
variable vloadoutputbuffer : bit;
variable vloadoutaddr : bit;

 variable vloadoutdata : bit;
 variable vincrementoutaddr : bit;

 variable vread : std_logic;
 variable vwrite : std_logic;

 begin
 -- clear local vars by default
 vread := '0';
 vwrite := '0';
 vclrindex := '0';
 vclrvalpred := '0';
 vclrinputbuffer := '0';
 vreadstep := '0';
 vclrbufferstep := '0';
 vresetlocalinaddress := '0';
 vresetlocaloutaddress := '0';
 vloadinaddr := '0';
 vloadinputbuffer := '0';
 vincbufferstep := '0';
 vloadindex := '0';
 vsetsign := '0';
 vclrsign := '0';
 vclrdelta3 := '0';

 vloadvalpred := '0';
 vloadoutputbuffer := '0';
 vloadoutaddr := '0';

 vloadoutdata := '0';
 vincrementoutaddr := '0';

 case state is
 when swait => vclrindex := '1'; vclrvalpred := '1';

 when init =>
 vclrinputbuffer := '1';
 vreadstep := '1';
 vclrbufferstep := '1';
 vresetlocalinaddress := '1';
 vresetlocaloutaddress := '1';

 when waitread => -- nothing
 when step1read =>
 vread := '1';
 vloadinaddr := '1';
 vloadinputbuffer := '1';
 when postram => vincbufferstep := '1';

 when incindex => selindex <= increment;
 vloadindex := '1';

 when fixindexstep3 =>
 if(index < 0) then
 vloadindex := '1';
 selindex <= low;
 elsif (index > 88) then
 vloadindex := '1';
 selindex <= high;
 end if;
 if (delta(3) = '1') then
 vsetsign := '1';

 31

CS 151 C, Winter 2004 Final Project
ADPCM Decoder/Encoder Hardware Implementation

 else
 vclrsign := '1';
 end if;
 vclrdelta3 := '1';

 when step4 =>
 vloadvalpred := '1';
 selvalpred <= outoperation;

 when step56 => if (valpred > 32767) then
 selvalpred <= high;
 vloadvalpred := '1';
 elsif (valpred < -32768) then
 selvalpred <= low;
 vloadvalpred := '1';
 end if;
 vreadstep := '1';

 when step7 => vloadoutputbuffer := '1';
 when waitwrite => -- nothing

 when stepwrite =>
 vwrite := '1';
 vloadoutdata := '1';
 vloadoutaddr := '1';

 when upaddr => vincrementoutaddr := '1';
 end case;

 read <= vread;
 write <= vwrite;
 clrindex <= vclrindex;
 clrvalpred <= vclrvalpred;
 clrinputbuffer <= vclrinputbuffer;
 readstep <= vreadstep;
 clrbufferstep <= vclrbufferstep;
 resetlocalinaddress <= vresetlocalinaddress;
 resetlocaloutaddress <= vresetlocaloutaddress;
 loadinaddr <= vloadinaddr;
 loadinputbuffer <= vloadinputbuffer;
 incbufferstep <= vincbufferstep;
 loadindex <= vloadindex;

 setsign <= vsetsign;
 clrsign <= vclrsign;

 clrdelta3 <= vclrdelta3;
 loadvalpred <= vloadvalpred;
 loadoutputbuffer <= vloadoutputbuffer;
 loadoutaddr <= vloadoutaddr;
 loadoutdata <= vloadoutdata;
 incrementoutaddr <= vincrementoutaddr;

 end process;

-------------------------datapath ---------------------------

 datapath : process (clk)

 variable stepr3 : integer;
 variable stepr2 : integer;
 variable stepr1 : integer;
 variable stepr0 : integer;
 variable inc1 : integer;
 variable inc2 : integer;
 variable vpdiff : integer;
 variable outop : integer;
 variable valpredvectortemp : std_logic_vector(15 downto 0);

 begin

 if (clk'EVENT and clk = '1') then

 32

CS 151 C, Winter 2004 Final Project
ADPCM Decoder/Encoder Hardware Implementation

 if (clrindex = '1') then
 index <= 0;
 end if;

 if (clrvalpred = '1') then
 valpred <= 0;
 end if;

 if (clrinputbuffer = '1') then
 inputbuffer <= (others => '0');
 end if;

 if (readstep = '1') then
 step <= conv_std_logic_vector(stepsizetable(index), 16);

 end if;

 if (clrbufferstep = '1') then
 bufferstep <= "000";
 end if;

 if (resetlocalinaddress = '1') then
 localinaddr <= (others => '0');
 end if;

 if (resetlocaloutaddress = '1') then
 localoutaddr(17 downto 0) <= (others => '0');
 localoutaddr(18) <= '1';
 end if;

 if (loadinaddr = '1') then
 inaddr <= localinaddr;
 end if;

 if (loadinputbuffer = '1') then
 inputbuffer <= indata;
 end if;

 if (incbufferstep = '1') then
 case bufferstep is
 when "000" => bufferstep <= "001";
 delta <= inputbuffer (31 downto 28);
 localinaddr <= localinaddr + 1;
 when "001" => bufferstep <= "010";
 delta <= inputbuffer (27 downto 24);

 when "010" => bufferstep <= "011";
 delta <= inputbuffer (23 downto 20);

 when "011" => bufferstep <= "100";
 delta <= inputbuffer (19 downto 16);

 when "100" => bufferstep <= "101";
 delta <= inputbuffer (15 downto 12);

 when "101" => bufferstep <= "110";
 delta <= inputbuffer (11 downto 8);

 when "110" => bufferstep <= "111";
 delta <= inputbuffer (7 downto 4);

 when "111" => bufferstep <= "000";
 delta <= inputbuffer (3 downto 0);

 end case;
 end if;

 if (loadindex <= '1') then
 case selindex is
 when increment =>

 33

CS 151 C, Winter 2004 Final Project
ADPCM Decoder/Encoder Hardware Implementation

index <= index + indextable(conv_integer(delta));
 when high =>

index <= 88;
 when low =>

index <= 0;
 end case;
 end if;

 if (setsign = '1') then
 sign <= '1';
 end if;

 if (clrsign = '1') then
 sign <= '0';
 end if;

 if (clrdelta3 = '1') then
 delta(3) <= '0';
 end if;

 if (loadvalpred = '1') then
 case selvalpred is
 when outoperation =>
 stepr3 := conv_integer("000" & step(15 downto 3));
 stepr2 := conv_integer("00" & step(15 downto 2));
 stepr1 := conv_integer("0" & step(15 downto 1));
 stepr0 := conv_integer(step);
 if (delta(0) = '1') then

inc1 := stepr3 + stepr2;
else

inc1 := stepr3;
end if;

 if (delta(1) = '1') then
inc2 := inc1 + stepr1;

else
inc2 := inc1;

end if;
 if (delta(2) = '1') then

vpdiff := inc2 + stepr0;
else

vpdiff := inc2;
end if;

 if (sign = '1') then
 outop := valpred - vpdiff;
 else
 outop := valpred + vpdiff;
 end if;
 valpred <= outop;

 when high =>
 valpred <= 32767;

 when low =>
 valpred <= -32768;

 end case;
 end if;

 if (loadoutputbuffer <= '1') then
 case outhalf is
 when '0' =>

valpredvectortemp :=
 conv_std_logic_vector(conv_signed(valpred, 16),
 16);

 outputbuffer (31 downto 16) <=
 valpredvectortemp(15 downto 0);

 outhalf <= '1';
 when '1' =>

valpredvectortemp :=
 conv_std_logic_vector(conv_signed(valpred, 16),
 16);

 34

CS 151 C, Winter 2004 Final Project
ADPCM Decoder/Encoder Hardware Implementation

 outputbuffer (15 downto 0) <=
 valpredvectortemp(15 downto 0);

 outhalf <= '0';
 end case;
 end if;

 if (loadoutaddr = '1') then
 outaddr <= localoutaddr;
 end if;

 if (loadoutdata = '1') then
 outdata <= outputbuffer;
 end if;

 if (incrementoutaddr = '1') then
 localoutaddr <= localoutaddr + 1;
 end if;
 end if;
 end process;

end rtl;

4. VHDL Simulations

In this course, we first developed high-level behavioral VHDL (almost exactly the
same as shown earlier) from the reference C implementation of ADPCM [4], which we
obtained from the MediaBench benchmark suite [3]. We then brought this VHDL down
to a low-level RTL abstraction, but found this too difficult to debug. We settled for an
implementation in the middle, decomposed into states but with all datapath action
included in the state transition function. We found this the easiest to debug and simulate.
(Refer to the Appendix for this code.)

Our approach to this project was to debug our implementation on the chip much
like we debug software. Unfortunately, chip-level debugging requires more time and
more tools than we had at our disposal. For instance, we were unable to successfully
write and read test data to/from RAM on many of the FPGAs. We subsequently found
out that this was due to RAM failure on most of the XSV boards. We suggest that in the
future, this class be simulation-only, as it is very difficult to bring a non-trivial FPGA
project to completion in the last half of a given quarter. If FPGAs must be used, we
propose that this course have a dedicated lab separate from CS152B students, with newer
and higher-capacity boards.

To perform a functional validation of our design, we ran on simple test data. In
the simulator, we repeated the 16-bit input data 0x00FF repeatedly (both as sound data
for the encoder to read and ADPCM data for the decoder to read). We were able to
demonstrate perfect control functionality, as the predictor values of the encoder and
decoder converged on the repeated input (shown in Figures 16 and 19 respectively). For
reference, we have included Figures 14 and 17 (which respectively show the initialization
phases of the decoder and encoder), and Figures 15 and 18 (which respectively show the
conclusion of the decoder and encoder, as they complete their read of and write to
memory).

 35

CS 151 C, Winter 2004 Final Project
ADPCM Decoder/Encoder Hardware Implementation

FIGURE 14. Decoder initialization

FIGURE 15. Decoder conclusion

 36

CS 151 C, Winter 2004 Final Project
ADPCM Decoder/Encoder Hardware Implementation

FIGURE 16. Decoder convergence

FIGURE 17. Encoder Initialization

 37

CS 151 C, Winter 2004 Final Project
ADPCM Decoder/Encoder Hardware Implementation

FIGURE 18. Encoder Conclusion

FIGURE 19. Encoder Convergence

 We were able to synthesize the decoder in 615 out of 768 slices at 53.9 MHz.
This took up roughly 80% of the FPGA. The encoder was synthesized in 766 out of 768
slices at 53.9 MHz. This took up 99% of the FPGA.

5. Conclusions

Overall, this course felt like boot camp for hardware designers. We became very
familiar and comfortable with the VHDL language as well as the simulation tools.
Moreover, we gained the vital skill to break down any behavioral system into a register
transfer level system with unique data, as well as control subsystems. Aside from these
obvious lessons taught by a hardware design course, we also learned how to be

 38

CS 151 C, Winter 2004 Final Project
ADPCM Decoder/Encoder Hardware Implementation

 39

decompose a sequential algorithmic specification into parallel hardware. We gained
much experience scrutinizing designs in order to allow the maximum number of code to
run in parallel, increasing the efficiency of our design in terms of speed and throughput.
Furthermore, we became very familiar with an industry standard audio/data compression
algorithm, used in many dialogue voice processing applications. Interestingly enough,
we recently learned that the implementation of ADPCM on an FPGA has been the subject
of multiple masters theses (e.g. [5]), indicating the non-triviality of this project. After the
knowledge and experience gained during this project, we feel as if we are nearly prepared
to succeed in an industry hardware design environment.

6. References
 [1] IMA Digital Audio Focus and Technical Working Groups, “Recommended Practices for

Enhancing Digital Audio Compatibility in Multimedia System: Revision 3.00,” IMA
Compatibility Proceedings, Vol. 2, Number 2, October 1992.

[2] P. Sutton, “XSV Board 1.0 – VHDL Interfaces and Example Designs: Audio Project,”
http://www.itee.uq.edu.au/~peters/xsvboard/audio/audio.htm

[3] C. Lee, M. Potkonjak and W. H. Maggione-Smith, “MediaBench: A Tool for Evaluating and
Synthesizing Multimedia and Communications Systems,” in Proceedings of International
Symposium on Microarchitecture, 1997.

[4] J. Jansen, ADPCM Reference Implementation, http://www.cwi.nl/ftp/audio/adpcm.zip
[5] Sampth Gangi, ”ASIC Implementation of a custom ADPCM encoder,” Master’s Project,

University of South Florida Electrical Engineering Department, December 2002.

Appendix

Attached is all source code that we used in simulation and synthesis:

http://www.cwi.nl/ftp/audio/adpcm.zip

	Adaptive Differential Pulse Code Modulation Decoder/Encoder Hardware Implementation
	ABSTRACT
	
	2. System Level Description
	3. RTL Description
	FIGURE 9.ADPCM Encoder Controller State Machine
	FIGURE 10a.ADPCM Encoder Datapath
	FIGURE 10b.ADPCM Encoder Datapath (cont)
	FIGURE 10c.ADPCM Encoder Datapath (cont)

	4. VHDL Simulations
	5. Conclusions
	6. References

