CS 151 C, Winter 2004 Final Project

CRC-8 Error Check

CS 151 C Winter Quarter 2004

Design of Digital Systems Final Project

Prof. Leon Alkalai

CRC-8 Error Check
Authors:

Daniel D. Chia (602-905-791)
Adrian A. Javelo (602-908-563)
March 23, 2004
ABSTRACT

We have always been interested in the fundamental workings of wireless communication systems. As a result, when error correcting code was mentioned as an option for a project topic, we immediately started thinking about various methods used for correcting errors in communication systems. After doing some research on the internet, we came upon CRC error detection, and decided that we would create a hardware CRC-8 error checker since it has a clear, well documented algorithm that seemed “easy” to implement using VHDL. The interesting thing about CRC-8 is its ability to detect a wide variety of errors while being simple to implement in hardware. However, we still ran into our fair share of challenges while attempting to implement our design. The timing of handshaking signals between the CRC and memory modules, as well as getting the design to work on the physical hardware were particularly challenging aspects. When everything was finally working, we looked back and found that figuring out how to replace non-synthesizable code with a synthesizable equivalent was the greatest contributing factor to arriving at a working design.
1. Introduction

CRC-8 is an algorithm in which a polynomial (Cx = X8 + X2 + X + 1) is used to calculate a CRC value that can be used to detect errors in an incoming bit stream. The CRC value is appended as an extra byte to the end of an outgoing data packet by a sender. It is obtained by left shifting the outgoing data byte and performing an XOR operation on it whenever the current MSB of the outgoing data byte is a ‘1’. While performing the XOR operation on the byte, the polynomial is represented as:

‘1 0000 0111’. An example of how all this works is given below:
Polynomial: 1 0000 0111

Message byte: 1010 1011

Message augmented with 8 zeros (for left shifting purposes): 1010 1011 0000 0000
1010101100000000 = CRC (Most current CRC value.
100000111 XOR poly (MSB is a 1, so XOR with polynomial
0010100010000000 = CRC (Result of XOR operation
 100000111 XOR poly
 (3rd bit is a 1, so XOR with polynomial
0000100001100000 = CRC

 100000111 XOR poly (5th bit is a 1, so XOR with polynomial
0000000001011000 = CRC (Since subsequent bits, up to 8, are 0’s, no

 more XOR operations are necessary. This is

 the final CRC value that is appended
When the next byte arrives, the current CRC value is XORed with the incoming byte to get the most current CRC value. After this operation, the calculation continues as described above.

The goal of our project is to use the CRC-8 algorithm to enable a sender to calculate and append a CRC byte to the end of a data packet. When the receiver gets the data, it too calculates its own CRC byte and then compares it to the incoming CRC byte. If the two CRC bytes do not match, an error flag is raised. Below is a high level description of the CRC sender and receiver.
[image: image1.emf]CRC

Sender

SRAM

Sender gets data

from here

Address 0-300

Sender writes data

here and receiver

reads data from

here

Address 300-600

Receiver writes

data

From 600 and on

CRC

Decoder

Memory

Interface

8 bit

Data

8 bit

Data

8 bit

Data

Memory

Control

Controls I/O to dip

switches and bar LEDs

8 bit

Data

8 bit

Data

8 bit

Data

8 bit

Data

8 bit

Data

8 bit

Data

8 bit

Data

8 bit

Data

8 bit

Data

2. System Level Description

[image: image2.emf]Memory

(SRAM)

Memory

Interface

Memory

Control

CRC

Module

ldata

laddr

Read data

Read addr

Write data

Write addr

DIN

DINVALID

DINREADY

DOUT

DOUTVALID

DOUTREADY

ERRFLG

[image: image3.emf]Dip Switches

3 4 5 6 7 8 9 10

Bar LED’s

2

3

r

e

s

e

t

n

S

R

A

M

R

e

s

e

t

M

o

d

e

W

r

i

t

e

E

r

r

o

r

R

e

a

d

E

r

r

o

r

C

R

C

E

r

r

o

r

D

a

t

a

E

r

r

o

r

1 2

DONE

ERRFLG

Memory

This is the SRAM located on the XSV board. It takes the data and address to be written or read from the memory interface. Its purpose is to simulate transmission between a sender and encoder.
Memory Interface

Because memory is slower than the processor, we needed a module that acts as a controller for reading and writing into memory. It ensures reads and writes do not occur at the same time, and communicates with the parallel port on the XSV board for inputting data from the outside world. Also ensures that read and writes have enough time to complete before allowing another read or write request.
Memory Control

This module controls when data is fed to the CRC module, and when outputs from the CRC module are written back into memory. It signals the operation of the CRC module based on the readiness of the memory. It also serves as in interface to the outside world by taking inputs from the dip switches and feeding them to the CRC module to determine its operation. Once the CRC module raises a signal indicating that it has completed its task, the memory control lights up the appropriate bar LEDs.
CRC Module

[image: image4.emf]CRC

Module

Mode

CLK

resetn

Din

Dinvalid

Doutready

Process_done

1

1

1

1

1

1

8

Dout

Doutvalid

Dinready

Errflg

Crc_done

8

1

1

1

1

This module functions as either a CRC encoder or decoder. The data packet format we have chosen is as follows:

[image: image5.emf]Header byte indicates

number of bytes that follow

Data bytes appear here

CRC byte appended as

last byte

In the encoder mode, the module processes incoming information by sending it straight to the output while computing a CRC value for the current byte. Once the proper number of bytes have been processed, the CRC byte is the last byte sent out.
In decoder mode, the module again takes incoming data, sends it to the output, and computes a CRC value based on this data. When the encoder’s CRC byte arrives, it compares this with its own calculated CRC value. If the two CRC bytes do not match, then an error flag is raised.

The functionality of each input/output signal to the CRC module is indicated below:

Inputs

Mode: Indicates whether the module is an encoder or decoder. Mode = ‘0’ is an encoder.

CLK: Clock input for the module

resetn: User input which resets the module

Din: Incoming data byte
Dinvalid: Input from Memory Control indicating that valid data has been put on the lines

Doutready: Input from Memory Control that indicates memory is ready to send more data

Process_done: Input from Memory Control that indicates last CRC byte has been successfully written into

memory.

Outputs
Dout: Output data

Doutvalid: Indicates to Memory Control that output data is valid

Dinready: Indicates to Memory Control that the module is ready to receive more data

Errflg: Indicates to Memory Control that an error has occurred and a flag should be raised

Crc_done: Indicates to Memory Control that module has finished performing its encoder/decoder duties

Timing was one of the most critical issues when designing this and other modules. The outputs from the CRC module had to be held until the memory controller acknowledge them. Because the CRC module performs so much faster than the memory modules, it was quite easy to have the handshaking signals go low after a few clock cycles. This was solved by adding states where the CRC module’s outputs could be held until prompted by the memory controller.
3. RTL Description
Single Cycle CRC Control

[image: image6.emf]S0

obtain byte

count

RESETn = 0

RESETn = 1

Reinitialize

ALL signals

S1

Process CRC if

there’s valid

data, increment

byte counter

S2

Check byte

counter

START

I

f

D

o

u

t

r

e

a

d

y

=

1

S3

Check mode

Byte counter =

total byte count

Mode = 1

S4

Compare CRC

with incoming

CRC

If

Doutready =

1

Doutready =

0

DOUTREADY = 0

H

a

v

e

n

o

t

p

r

o

c

e

s

s

e

d

a

l

l

b

y

t

e

s

y

e

t

Process_

done = 1,

raise flag if

needed

S5

Output CRC

value

Mode = 0

Process_

done = 1

Single Cycle CRC Calculation Datapath
1) Place latest CRC into a variable, v_crc

2) Place incoming byte into another variable, v_inbyte

3) XOR latest CRC and incoming byte, and append 8 zeros to the result

4) Process 8 bits by left shifting until a 1 appears as the MSB

5) Once a 1 appears, XOR with polynomial

6) Once 8 bits have been processed, covert the temporary 16 bit data to an 8 bit CRC value
The following diagram depicts the single cycle algorithm. There are a total of 8 modules since each module calculates an intermediate CRC value until 8 bits have been processed.

[image: image7.emf]8 8

V_crc inbyte

8

8-bit left shift register

8

poly

8

 0 1

MUX

MSB

1

1

8 8

8 8

inbyte

8

8-bit left shift register

8

poly

8

 0 1

MUX

MSB

1

1

8

8

8 8

inbyte

8

8-bit left shift register

8

poly

8

 0 1

MUX

MSB

1

1

8 8

8

Final CRC

...

...

...

8

8

Multi Cycle CRC Calculation Algorithm

[image: image8.emf]S0

wait for

LENGTH from

memory

RESETn = 0

RESETn = 1

Grab MODE

S1

output

LENGTH to

memory

DINVALID = 0

DINVALID = 1

Grab LENGTH

ACKNOWLEDGE

DOUTREADY = 0

S2

wait for DATA

from memory

DOUTREADY = 1

S3

calculate 1

iteration of

CRC

S4

calculate 1

iteration of

CRC

WHILE iteration < 8

iteration ++

S5

output current

DATA string

WHEN iteration = 8

DOUTREADY = 0

D

O

U

T

R

E

A

D

Y

=

1

WHILE

counter < length

S6

output CRC

byte to

memory

WHEN

counter = length

S8

wait for MODE

change

S7

check CRC

with calculated

CRC

M

O

D

E

=

0

M

O

D

E

=

1

MODE CHANGE

GO BACK TO START

START

Multicycle CRC Calculation Datapath

[image: image9.emf]8

8

V_crc

inbyte

8

8-bit left shift register

8

poly

8

0 1

MSB

1

1

8 8

Register

 SHAPE * MERGEFORMAT
[image: image10]
4. VHDL Simulations
Behavioral VHDL was used to create the entities that performed specific functions as well as test benches so that testing would be much faster. The tools used included Xilinx Project Navigator and Modelsim Xilinx Edition. The Project Navigator tool was used as an editor and compiler, while Modelsim was used for simulation on waveform.

Please see attached pages containing annotated waveforms. These waveforms demonstrate test cases that validate the design, and prove that they function according to specifications.

Error Injection: The following types of errors can be injected during simulation using the dip switches on the XSV board or by manually entering them in on a testbench waveform. This covers a broad range of faults that may occur in the real world while transmitting data.

· Write Error: DOUT + x”01”

· Read Error: DIN XOR ‘10101010’

· CRC Error: CRC + x”01”

· Data Error: Data + x”01”

Discuss here the approach to using VHDL, and the simulation tools that are used; feel free here to discuss (briefly) the limitations of the tools that were available, as well as recommendations for the future; discuss here how you were able to validate your design via simulations; how do we know that your design works. Also discuss the synthesis of your design in the target platform, as well as associated timing and performance measures wherever applicable.

5. Conclusions

The goal of this project was to design a CRC-8 encoder and decoder that would be able to detect faults that are introduced during data transmission. We were able to successfully implement such an encoder/decoder on the XSV board. In the process of arriving at a working design, we discovered that certain coding styles do not synthesize correctly, and have learned to avoid them. Correcting handshaking timing issues was also difficult, but involved a rather simple fix where more states were added so that checks could be done more frequently to make sure signals are held for the proper duration. The most rewarding aspect was being able to overcome these difficulties and witness the functionality on a physical piece of hardware.
6. References
[1] USAR Systems, Inc, Firmware CRC-8 implementations for SMBus, Copyright 1999, USAR Systems Inc.
 http://www.semtech.com/pdf/smbus_crc_firmware.pdf
[2] Brennan, James, pctosraminterface-sv06.vhd, sram512kleft16bit50mhzreadreq-sv05.vhd,

 sraminterfacewithpport-sv01.vhd, Copyright 2001
Appendix
crc.vhd
memcontrol.vhd

memory_manage.vhd

memoryinterface.vhd

memorymultiplexor-sv01.vhd

MRIFACE.vhd

MWIFACE.vhd

pctosraminterface-sv06.vhd

sram512kleft16bit50mhzreadreq-sv05.vhd

sraminterfacewithpport-sv01.vhd
tb_crc2.vhd
top.vhd
The memory interface and memory manager were designed and implemented by Adrian. Group members assisted one another in figuring out how to implement the algorithm in VHDL. Both a multicycle and single cycle CRC calculation method were implemented by Adrian and Daniel, respectively. This was because a multicycle version would allow higher clock speeds while a single cycle version would easier to implement. Both group members contributed to the report and presentation.

The multicycle CRC datapath uses fewer gates and shifters, since it uses a register to store the intermediate value of the CRC. This would allow for a smaller chip area and higher clock speeds. However, the state transitions for the single cycle are much simpler.

March 18, 2004

(list authors)

1
9

_1141510965.vsd
Memory
(SRAM)

Memory
Interface

Memory
Control

CRC
Module

ldata

laddr

Read data

Read addr

Write data

Write addr

DIN

DINVALID

DINREADY

DOUT

DOUTVALID

DOUTREADY

ERRFLG

_1141762305.vsd
S0
obtain byte count

RESETn = 0

RESETn = 1
Reinitialize ALL signals

S1
Process CRC if there’s valid data, increment byte counter

If
Doutready = 1

Doutready = 0

If Doutready = 1

S2
Check byte counter

Have not processed all bytes yet

S3
Check mode

Byte counter = total byte count

Process_
done = 1, raise flag if needed

Mode = 1

S4
Compare CRC with incoming CRC

S5
Output CRC value

Process_
done = 1

Mode = 0

DOUTREADY = 0

START

_1141804046.vsd

_1141805096.vsd
Dip Switches

3

4

5

6

7

8

9

10

Bar LED’s

2

3

resetn

SRAM Reset

Mode

Write Error

Read Error

CRC Error

Data Error

1

2

DONE

ERRFLG

_1141767784.vsd

_1141511263.vsd
Header byte indicates number of bytes that follow

Data bytes appear here

CRC byte appended as last byte

_1141517290.vsd
S0
wait for LENGTH from memory

RESETn = 0

RESETn = 1
Grab MODE

S1
output LENGTH to memory

DINVALID = 0

DINVALID = 1
Grab LENGTH
ACKNOWLEDGE

DOUTREADY = 0

S2
wait for DATA from memory

DOUTREADY = 1

S3
calculate 1 iteration of CRC

S4
calculate 1 iteration of CRC

WHILE iteration < 8
iteration ++

S5
output current DATA string

WHEN iteration = 8

DOUTREADY = 0

DOUTREADY = 1

WHILE
counter < length

S6
output CRC byte to memory

WHEN
counter = length

S8
wait for MODE change

S7
check CRC with calculated CRC

MODE = 0

MODE = 1

MODE CHANGE
GO BACK TO START

START

_1141509121.vsd
CRC Sender

SRAM

Sender gets data from here
Address 0-300

Sender writes data here and receiver reads data from
here
Address 300-600

Receiver writes
data
From 600 and on

8 bit
Data

Memory
Interface

8 bit
Data

CRC Decoder

8 bit
Data

8 bit
Data

8 bit Data

8 bit
Data

8 bit
Data

Memory
Control

Controls I/O to dip switches and bar LEDs

8 bit
Data

8 bit
Data

8 bit
Data

8 bit
Data

8 bit
Data

_1141510658.vsd
CRC
Module

Mode

CLK

resetn

Din

Dinvalid

Doutready

Process_done

1

1

1

1

1

1

8

Dout

Doutvalid

Dinready

Errflg

Crc_done

8

1

1

1

1

