CS 151C Winter 2004 Final Project

Video Equalizer of Audio Input

CS 151C Winter Quarter 2004

Design of Digital Systems Final Project

Prof. Leon Alkalai

Video Equalizer of Audio Input
Authors: Wen Hsu

Aneesh Singhal

March 23, 2004
Abstract

What our project involves is taking input from the existing audio module and outputting it in different forms of visual effects via the video module. We basically use and modify these two modules directly from the website of Queensland University. We chose this project because it seemed like a good opportunity to work with audio and video modules at the same time. It seemed challenging and interesting to attempt such a project. First of all, we had to read through both modules, and understand what they were doing and what we could modify from them. The audio module is not that difficult to understand and modify, but we spent quite a lot of time on the video module. We had to use the input data from the audio module and manipulate the pixel output with that data, resulting in the final display.
1. Introduction

Our project is to make some sort of video output from the audio input we are currently playing. The audio module is taken directly from what we did for the demo project earlier in the class. We record audio data into the memory on the board, and play it back from the board directly. Meanwhile, the audio module also outputs some additional data, which represent the sounds it is playing to the video module. Then the video module can use that data and manipulate the display pixels into visual effects, like bar-type displays. Due to the conflict between video output ports and right-side memory ports, we can now only store approximately 5 second length of music, instead of 10.84 second originally as in the demo audio project.
We basically took the idea from the WinAmp mp3 player. When a user plays mp3s or any other supported audio file, one can open the equalizer and choose from different visualization options that allow them to select whatever video output they prefer. However, due to the time constraints, we only planned on implementing serial bar graphs as our video output from the music we are playing.

Team Responsibilities:

Wen: Taking care of video output from audio input, setting up a new clock for the pixel refresh rate, debugging.
Aneesh: Modification of audio module, debugging.
2. System Level Description

remap.vhd => the top level of our project. There is only one 32-bit signal pass in between video and audio module. All the rest outputs and inputs are connected to the board via remap.ucf that defines the port direction.

How to Use this:

1) Record the audio onto the board. (Press Push button #4) to record

2) Play and stop the audio that has been recorded. (Play = Push button #3) (Stop = Push button #2).

3) Reset is Push button #1

4) Controls of the switches are as following in the table: (directly from audio project)

5) When you are playing the audio, you will see some visual output shown on the monitor as well.

	Signal name
	Switches
	Value
	Description

	Direction
	1
	0

1
	Playback is in the reversed direction

Playback is in the forward direction

	Speed
	2,3
	0,0

0,1

1,0

1,1
	First half of buffer is played at ½ normal speed

Second half of buffer is played at ½ normal speed

Entire buffer is played twice at double speed

Entire buffer is played once at normal speed

	Precision
	4
	0

1
	Playback uses 8-bit precision

Playback uses 16-bit precision

	Volume
	5,6
	0,0

0,1

1,0

1,1
	Volume is quadrupled with capping for overflow

Volume is doubled with capping for overflow Volume is halved

Normal playback volume

Block Graph:

[image: image1.png]
2.1 Subsystem Level Descriptions (video)
hicolvga.vhd => The top level of video module, it basically creates the pixels that we are going to display and output it to some specific ports onto the board. However, inside this module, it also sets up some setting for those 2 modules that work underneath it.

Inputs: clk, rstn, audioData(32 bits)

Outputs: pixel (8 bits), blankn, RDn, WRn, RAMDACD, RS, hsync, vsync, triste, rramce, pixelclk
a) prgramdac.vhd => This code programs the RAMDAC on the XSV-300 board with data for either high-color mode or a simple color map. We didn’t modify anything from it.

Inputs: clk, rstn, start,

Outputs: done, WRn, RDn,

Input/Output (bi-direction): RS(3 bits), data(8 bits).

b) vgacore.vhd => Creates VGA timing signals to a monitor, timings are currently for 72Hz @ 800 * 600. To change the resolution or refresh rate, change the value of the constants and the generics to whatever is desired. Changing the resolution and / or refresh also means the clock speed may have to change (currently based off a 50MHz clock). We didn’t modify anything from it, either.

Generic: H_SIZE, V_SIZE

Inputs: reset, clock,

Outputs: vsyncb, latch, enable, hloc(10 bits), vloc(10 bits).

Buffer: hsyncb.
2.2 Subsystem Level Descriptions (audio)
audiotop.vhd => The top level of audio module, it basically connects the audio.vhd with the SRAM interface, such that audio playback and recorder can have access to memory. It creates two different clocks for its subsystem, especially for player and recorder, such that they don’t have to work with the normal 50Mhz clock. They will have their own clocks.

Inputs: clk, rstn, direction, speed(2 bits), precision, volume(2 bits), stdout, recordStart, playStart, playStop.

Outputs: CELeftn, OELeftn, WELeftn, SRAMLeftAddr(19 bits), mclk, sdin, dataPlay(32 bits), done

Buffer: lrck, sclk

In/Out: SRAMLeftData(16 bits)

a) audio.vhd => Inside this level, it does 3 main things. First, it triggers the starts of player and audio, as well as setting up a new clock for audio player/recorder module. Second, it maps the input/output of player and recorder to the outside of this module. Lastly, it can change the address we are going to play as well as the data we are going to play.

Inputs: clk, rstn, sdout, recordStart, recordStop, playStart, playStop, direction, speed(2 bits), precision, volume(2 bits), dataIn(31 bits)
Output: mclk, sdin, recordAddress(19 bits), playAddress(19 bits), dataOut(32 bits), dataPlay(32 bits), read, write, full, done
Buffer: lrck, sclk,

a.i) player.vhd => with the specific clock that has been created in audio.vhd. It runs through some state machines with that clock, and output the currently playing address. Plays about 5 seconds of stereo output from the RAM into the stereo encoder. When start is asserted, the player will keep playing until stop is asserted or the end of left side RAM is reached. If the end of left side RAM is reached, then the output done is asserted.

Inputs: start, stop, rstn, sclk, lrck, dataIn(32 bits),

Outputs: address(19 bits), done, read, sdout
a.ii) recorder.vhd => It records about 10 seconds of stereo input from the stereo decoder into left side RAM. When start is asserted, the recorder will keep recording until stop is asserted or the end of left side RAM is reached. If the end of left side RAM is reached, then the output full is asserted.

Inputs: start, stop, rstn, sclk, lrck, sdin

Outputs: dataOut(32 bits), address(19 bits), full, write
b) sram512k32bit50mhz-sv05.vhd => this is the memory module that talks with the board. It does reading and writing to the board. This module is provided, and we shouldn’t modify anything from it.

3. RTL Description

The one VHDL that we modified the most is hicolvga.vhd. Inside this, there is an if-else statement that basically taking care of the outputting bar graph. However, to implement this in RTL level, this if-else statement will be in forms of multiplexer and decoders, but we did not actually implement this in RTL form, we did it with if-else.
However, we still provide 3 schematic of RTL description for 3 main subsystems. They are AudioTop, Audio, and Video.
4. VHDL Simulations

We actually didn’t use simulation software to simulate. We basically did step-by-step modification on those provided modules, and just simply implemented the design and tried them on the board. It is mainly because couple reasons. First, you cannot simulate things that are stored in memory, such that those audio data in memory module can’t be used in simulation. Secondly, our output is visualization, there is no decent way that we can simulate the output on some waveforms and figure what it is going on. The best way to test is still trying to make it implemented and work it on the board.
5. Conclusions

At first, we didn’t choose this project; we were supposed to do an extension project onto the demo audio project. However, we encountered some difficulties that we cannot really solve in a short period of time. That is issue with buffer. In Xilinx software, we cannot really make arrays that are too big; however, we need couple big arrays for buffer used. Therefore, it ended up we switched to this project in the beginning of 10th week. This project is basically quite fun. We learned audio module quite a lot when we were trying to do our first one; therefore, all we had to do here is playing around with the pixel output and make another clock that works for refresh rate. We learned a lot of VHDL from doing this project, and suffered a lot, too.
6. References

[1] “Audio effects algorithms,” http://users.iafrica.com/k/ku/kurient/dsp/algorithms.html
Appendix
See codes are following pages. (They might be modified after turning in the report and before we demonstrate our project to TA/Professor).

March 23, 2004

Wen Hsu

Aneesh Singhal

1
5

