CS 151 C, Winter 2004 Final Project

Enhanced Audio Project

CS 151 C Winter Quarter 2004

Design of Digital Systems Final Project

Prof. Leon Alkalai

Enhanced Audio Project

Dixie Xue & Wei Zhang

March 22, 2004

ABSTRACT

We have done class project #1, audio project, which was a good project to implement and demonstrate on FPGA board. We felt like that it could be added more effects, such as volume control, panning, echo, noise reduction and etc. During this project, we have spent a lot of time on echo effect. Its algorithm was not very hard to write, but we had difficulty to test it on board since it occurred some noise. Therefore, we decided to design a noise gate to echo effect, which need to set a correct thread hold number. However, we did not have any audio project experience before, and we could not see the audio data input with Xilinx software tool in the lab. It became very hard to write test-bench file to see if the data input was right, therefore we have to assume the data was correct. The design of echo effects is very space consuming. It used around 50 percent of slice numbers. As a result, we don't have space to implement noise reduction. In addition, we have tried to write some functions during the project and learned lots of function set-up and function call writing style. Trying to distribute all the available switches and buttons on the board was also a good experience for us. We used all of them to implement this project.

1. Introduction
This audio project contains a total of six files, which includes remap.vhd, audiotop.vhd, audio.vhd, player.vhd, recorder.vhd, and scraminterface.vhd file. It has about 99% of total slice registers. Due to limitations in the clock speed multiplier selections, the audio project samples at a frequency of 48.8 kHz instead of the normal 48kHz that would be used. This project allows recording and playback of just over 10 seconds of sound. Additionally, we have enhanced it with some amplitude effects, such as volume control and panning, and some time delay effects, such as echo and phasing. Those effects VHDL codes were been modified in remap.vhd, audiotop.vhd and audio.vhd. We set the default precision as 16 bits. The volume control has 4 scales, each one double or halved the current input data. The panning can be happened to shift left or shift right, which is also contained in any scale of volume. The echo effect can be run in any scales as well. It was tried to implement with noise gating to reduce the noise. The noise reduction would be operated when it detects the input data is out of the range of silent bits.

Dixie focused on panning effect and Wei focused on volume control at the beginning. We then put codes together, and work out the control for these two effects. We have worked on echo and noise reduction together because we had a hard time to make echo run without noise at the first place.

2. System Level Description

Pushbutton Distributions:

Button 1: Reset

Button 2: Playback stop

Button 3: Playback start

Button 4: Record start

	Signal Name
	Switches
	Value
	Description

	Direction
	1
	0
	Playback in reversed direction

	
	
	1
	Playback in forward direction

	Speed
	2,3
	00
	First half of buffer is played at 1/2 normal speed

	
	
	01
	Second half of buffer is played at 1/2 normal speed

	
	
	10
	Entire buffer is played twice at double speed

	
	
	11
	Entire buffer is played once at normal speed

	Signal Name
	Switches
	Value
	Description

	Effect Type
	4,5
	00
	Volume Control Effect

	
	
	01
	Panning Effect

	
	
	10
	Echo Effect

	
	
	11
	Noise Reduction Effect

	Effect Control
	6
	0
	Decrease Volume/ Panning Left

	
	
	1
	Increase Volume/ Panning Right

	Scale
	7,8
	00
	Normal Volume/Panning Center

	
	
	01
	Scale is 1

	
	
	10
	Scale is 2

	
	
	11
	Scale is 3

The block diagram of the enhanced project is shown below.

[image: image1.png]
The system reads inputs from switches and buttons (shown in the table above). Then the data is processed according to the control signal. If recordStart is 1, processed output is stored in RAM. When playStart is on, data is read from RAM and output from SRAMLeftData and SRAMRightData. When playStop is on, data is no longer read from RAM. As we modify the original project, we only add three more inputs, which are scale, effectsType, and effectsCtrl. These control signals allow us to implement four different audio effects. When reset is on, the states for player and recorder goes to the initial state.

Show basic sub-system components and give a structural description of the system with all the input and output ports clearly labeled, as well as the data-types defined.
[image: image2.png]

[image: image3.png]

[image: image4.png]

[image: image5.png]
2.x Subsystem Level Descriptions

1. Audio: Creates clocks for the audio codec and connects the recorder and player devices together.

2. Player: Reads audio data from RAM and coverts it into serial data for the audio codec. Requires the clocks SCLK and LRCK as input to produce data at the right time.

3. Recorder: Converts serial data from the audio codec into data, which is stored in RAM. Requires the clocks SCLK and LRCK as input to read data from the serial input at the right time.

4. SRAM Interface: RAM controller to read and write RAM.

3. RTL Description

Since we just modified audio.vhd and audiotop.vhd file in this project, we will shows the structural and behavioral description for these two files only.

RTL Control Subsystem

RTL Delay Buffers

RTL Data Subsystem

Structural:

Audiotop:

entity audiotop is

port (

clk: in STD_LOGIC;

rstn: in STD_LOGIC;

speed: in STD_LOGIC_VECTOR(1 downto 0);

scale: in STD_LOGIC_VECTOR(1 downto 0);

-- effectsType choose to do panning or volume control

effectsType: in STD_LOGIC_VECTOR(1 downto 0);

-- 1 is panning right or increase volume

effectsCtrl: in STD_LOGIC;

CELeftn: out STD_LOGIC;

CERightn: out STD_LOGIC;

OELeftn: out STD_LOGIC;

OERightn: out STD_LOGIC;

WELeftn: out STD_LOGIC;

WERightn: out STD_LOGIC;

SRAMLeftAddr: out STD_LOGIC_VECTOR (18 downto 0);

SRAMRightAddr: out STD_LOGIC_VECTOR (18 downto 0);

SRAMLeftData: inout STD_LOGIC_VECTOR (15 downto 0);

SRAMRightData: inout STD_LOGIC_VECTOR (15 downto 0);

sdout: in STD_LOGIC;

mclk: out STD_LOGIC;

lrck: buffer STD_LOGIC;

sclk: buffer STD_LOGIC;

sdin: out STD_LOGIC;

recordStart: in STD_LOGIC;

playStart: in STD_LOGIC;

playStop : in STD_LOGIC;

full: out STD_LOGIC;

done: out STD_LOGIC

);

end audiotop;

architecture audiotop_structure of audiotop is

component audio

 port (

 clk: in STD_LOGIC;

 rstn: in STD_LOGIC;

 sdout: in STD_LOGIC;

 recordStart: in STD_LOGIC;

 recordStop: in STD_LOGIC;

 playStart: in STD_LOGIC;

 playStop: in STD_LOGIC;

 speed: in STD_LOGIC_VECTOR(1 downto 0);

 scale: in STD_LOGIC_VECTOR(1 downto 0);

effectsType: in STD_LOGIC_VECTOR(1 downto 0);

effectsCtrl: in STD_LOGIC;

 dataIn: in STD_LOGIC_VECTOR(31 downto 0);

 mclk: out STD_LOGIC;

 lrck: buffer STD_LOGIC;

 sclk: buffer STD_LOGIC;

 sdin: out STD_LOGIC;

 recordAddress: out STD_LOGIC_VECTOR(18 downto 0);

 playAddress: out STD_LOGIC_VECTOR(18 downto 0);

 dataOut: out STD_LOGIC_VECTOR(31 downto 0);

 read: out STD_LOGIC;

 write: out STD_LOGIC;

 full: out STD_LOGIC;

 done: out STD_LOGIC

);

end component;

component sraminterface

 port (

 CLK: in STD_LOGIC;

 Resetn: in STD_LOGIC;

 doRead: in STD_LOGIC;

 doWrite: in STD_LOGIC;

 readAddr: in STD_LOGIC_VECTOR (18 downto 0);

 writeAddr: in STD_LOGIC_VECTOR (18 downto 0);

 readData: out STD_LOGIC_VECTOR (31 downto 0);

 writeData: in STD_LOGIC_VECTOR (31 downto 0);

 canRead: out STD_LOGIC;

 canWrite: out STD_LOGIC;

 CELeftn: out STD_LOGIC;

 CERightn: out STD_LOGIC;

 OELeftn: out STD_LOGIC;

 OERightn: out STD_LOGIC;

 WELeftn: out STD_LOGIC;

 WERightn: out STD_LOGIC;

 SRAMLeftAddr: out STD_LOGIC_VECTOR (18 downto 0);

 SRAMRightAddr: out STD_LOGIC_VECTOR (18 downto 0);

 SRAMLeftData: inout STD_LOGIC_VECTOR (15 downto 0);

 SRAMRightData: inout STD_LOGIC_VECTOR (15 downto 0)

);

end component;

signal GND : STD_LOGIC;

-- invert the active low switches

signal invRecordStart : STD_LOGIC;

signal invPlayStart : STD_LOGIC;

signal invPlayStop : STD_LOGIC;

-- signals between RAM and audio

signal read : STD_LOGIC;

signal write : STD_LOGIC;

signal playAddress : STD_LOGIC_VECTOR(18 downto 0);

signal recordAddress : STD_LOGIC_VECTOR(18 downto 0);

signal playData : STD_LOGIC_VECTOR(31 downto 0);

signal recordData : STD_LOGIC_VECTOR(31 downto 0);

begin

GND <= '0';

-- switches are active low so invert them

invRecordStart <= not recordStart;

invPlayStart <= not playStart;

invPlayStop <= not PlayStop;

audioDevice : audio port map(

 clk => clk,

 rstn => rstn,

 sdout => sdout,

 recordStart => invRecordStart,

 recordStop => GND,

 playStart => invPlayStart,

 playStop => invPlayStop,

--

direction => direction,

speed => speed,

-- comment out precision

-- precision => precision,

scale => scale,

effectsType => effectsType,

effectsCtrl => effectsCtrl,

dataIn => playData,

 mclk => mclk,

 lrck => lrck,

 sclk => sclk,

 sdin => sdin,

 recordAddress => recordAddress,

 playAddress => playAddress,

 dataOut => recordData,

 read => read,

 write => write,

 full => full,

 done => done

);

RAM : sraminterface port map(

 CLK => clk,

 Resetn => rstn,

 doRead => read,

 doWrite => write,

 readAddr => playAddress,

 writeAddr => recordAddress,

 readData => playData,

 writeData => recordData,

 canRead => open,

 canWrite => open,

 CELeftn => CELeftn,

 CERightn => CERightn,

 OELeftn => OELeftn,

 OERightn => OERightn,

 WELeftn => WELeftn,

 WERightn => WERightn,

 SRAMLeftAddr => SRAMLeftAddr,

 SRAMRightAddr => SRAMRightAddr,

 SRAMLeftData => SRAMLeftData,

 SRAMRightData => SRAMRightData

);

end audiotop_structure;

Audio:

entity audio is

 port (

 clk: in STD_LOGIC;

-- 50MHz Clock

 rstn: in STD_LOGIC;

-- asynchronous active-low reset

 sdout: in STD_LOGIC;

-- incoming serial data

 recordStart: in STD_LOGIC;

-- assert to start recording

 recordStop: in STD_LOGIC;

-- assert to stop recording

 playStart: in STD_LOGIC;

-- assert to start playback

 playStop: in STD_LOGIC;

-- assert to stop playback

 -- direction: in STD_LOGIC;

-- high = forward, low = backward

 speed: in STD_LOGIC_VECTOR(1 downto 0); -- choose speed of playback

 -- precision: in STD_LOGIC;

-- high = 16-bit, low = 8-bit

 scale: in STD_LOGIC_VECTOR(1 downto 0);-- choose volume of playback

effectsType: in STD_LOGIC_VECTOR(1 downto 0);

-- choose to do panning or volume control. 1 is panning

effectsCtrl: in STD_LOGIC;

-- 1 for panning right and increasing volume. vise versa

 dataIn: in STD_LOGIC_VECTOR(31 downto 0);-- playback data from RAM

 mclk: out STD_LOGIC;

-- audio device master clock

 lrck: buffer STD_LOGIC;
-- audio device Left/Right clock

 sclk: buffer STD_LOGIC;
-- audio device sampling clock

 sdin: out STD_LOGIC;

-- outgoing serial data

 recordAddress: out STD_LOGIC_VECTOR(18 downto 0);-- RAM write address

 playAddress: out STD_LOGIC_VECTOR(18 downto 0);-- RAM read address

 dataOut: out STD_LOGIC_VECTOR(31 downto 0);-- record data to RAM

 read: out STD_LOGIC;

-- RAM read signal

 write: out STD_LOGIC;

-- RAM write signal

 full: out STD_LOGIC;

-- high after record fills buffer

 done: out STD_LOGIC

-- high after playback exhausts buffer

);

end audio;

architecture audio_arch of audio is

signal count : STD_LOGIC_VECTOR(9 downto 0);
-- clock dividing counter

-- The following signals alter playback data according to inputs

signal playAddressInt1 : STD_LOGIC_VECTOR(18 downto 0);

signal playAddressInt2 : STD_LOGIC_VECTOR(18 downto 0);

signal dataInInt1 : STD_LOGIC_VECTOR(31 downto 0);

signal dataInInt2 : STD_LOGIC_VECTOR(31 downto 0);

signal revisedData : STD_LOGIC_VECTOR(31 downto 0);

type myarray is array (INTEGER range <>) of STD_LOGIC_VECTOR(31 downto 0);

signal delay_Buffer : myarray (9 downto 0);

component recorder

 port (

 start: in STD_LOGIC;

 stop: in STD_LOGIC;

 rstn: in STD_LOGIC;

 sclk: in STD_LOGIC;

 lrck: in STD_LOGIC;

 sdin: in STD_LOGIC;

 dataOut: out STD_LOGIC_VECTOR (31 downto 0);

 address: out STD_LOGIC_VECTOR (18 downto 0);

 full: out STD_LOGIC;

 write: out STD_LOGIC

);

end component;

component player is

 port (

 start: in STD_LOGIC;

 stop: in STD_LOGIC;

 rstn: in STD_LOGIC;

 sclk: in STD_LOGIC;

 lrck: in STD_LOGIC;

 dataIn: in STD_LOGIC_VECTOR (31 downto 0);

 address: out STD_LOGIC_VECTOR (18 downto 0);

 done: out STD_LOGIC;

 read: out STD_LOGIC;

 sdout: out STD_LOGIC

);

end component;

begin

-- recording device

recordDevice : recorder port map(

 start => recordStart,

 stop => recordStop,

 rstn => rstn,

 sclk => sclk,

 lrck => lrck,

 sdin => sdout,

 dataOut => dataOut,

 address => recordAddress,

 full => full,

 write => write

);

-- playback device

playDevice : player port map(

 start => playStart,

 stop => playStop,

 rstn => rstn,

 sclk => sclk,

 lrck => lrck,

 dataIn => dataInInt2,

 address => playAddressInt1,

 done => done,

 read => read,

 sdout => sdin

);

end audio_arch;

Behavioural:

No change in audiotop

Audio:

begin

-- clock division process

process(clk,rstn)

begin

if rstn = '0' then

count <= (others => '0');

lrck <= '0';

elsif clk'event AND clk = '1' then

count <= count + 1;

-- lrck will get a value based on the previous value of count.

-- this ensures it can be read properly byt the player and recorder

-- which are both clocked directly off sclk.

lrck <= count(9);

end if;

end process;

mclk <= count(1);

sclk <= count(3);

 -- alter playback address based on input selection

 process (playAddressInt1, speed)

 begin

case speed is

when "11" =>

-- normal playback speed

playAddressInt2 <= playAddressInt1;

when "10" =>

-- doubled playback speed, buffer is read twice

playAddressInt2 <= playAddressInt1(17 downto 0) & '0';

when others =>

-- halved playback speed, only half of the buffer is read

-- speed(0) determines which half.

playAddressInt2 <= speed(0) & playAddressInt1(18 downto 1);

end case;

 end process;

 -- reverse playback direction depending on input

 playAddress <= playAddressInt2; --when direction = '1' else "111" & X"FFFF" - playAddressInt2;

 -- alter playback data based on input selection

 process (dataIn, scale, effectsType, effectsCtrl)

 variable i : INTEGER;

 variable delay_size : INTEGER;

 begin

-- select scale

case scale is

when "00" =>

-- normal volume, panning center

dataInInt1 <= dataIn;

when "01" =>

-- scale is 1

--

-- PANNING FOR SCALE 1

--

if effectsType = "01" then

-- do panning

if effectsCtrl = '1' then -- shift sound to right

if dataIn(30) = dataIn(31) then

dataInInt1 <= dataIn(30 downto 16) & '0' & dataIn(15) & dataIn(15 downto 1);

 else

dataInInt1 <= (31 => dataIn(31), others => NOT dataIn(31));

 end if;

else -- sound to left

dataInInt1 <= dataIn(31) & dataIn(31 downto 17) & dataIn(14 downto 0) & '0';

 end if;

-- VOLUME CTRL

elsif effectsType = "00" then -- changing volume

if effectsCtrl = '1' then -- increase volume

-- doubled volume with capping for overflow

if dataIn(30) = dataIn(31) then

dataInInt1 <= dataIn(30 downto 16) & '0' & dataIn(14 downto 0) & '0';

else

dataInInt1 <= (31 => dataIn(31), others => NOT dataIn(31));

end if;

else -- decrease volume to halved volume

dataInInt1 <= dataIn(31) & DataIn(31 downto 17) & dataIn(15) & dataIn(15 downto 1);

end if;

--

-- ECHO EFFECT

--

elsif effectsType = "10" then -- do echo

i := 0;

-- delay 10 clock cycles

delay_Buffer(0) <= delay_Buffer(1);

delay_Buffer(1) <= delay_Buffer(2);

delay_Buffer(2) <= delay_Buffer(3);

delay_Buffer(3) <= delay_Buffer(4);

delay_Buffer(4) <= delay_Buffer(5);

delay_Buffer(5) <= delay_Buffer(6);

delay_Buffer(6) <= delay_Buffer(7);

delay_Buffer(7) <= delay_Buffer(8);

delay_Buffer(8) <= delay_Buffer(9);

delay_Buffer(9) <= dataIn;

-- decay is 1

dataInInt1 <= delay_Buffer(0) + dataIn;

else

dataInInt1 <= dataIn;

-- NOISE GATING

--

else

--

dataInInt1 <= dataIn;

--

revisedData <= dataIn + "00110000000000000011000000000000";

--

if effectsCtrl = '1' then --NOISE GATING

--

if (revisedData < "00110000000000000011000000000000"

--

 or revisedData > "11001111111111111101000000000000") then

--

 dataInInt1 <= "00000000000000000000000000000000";

--

else

--

dataInInt1 <= revisedData;

--

end if;

--

else

 -- WITHOUT NOISE GATING

--

dataInInt1 <= revisedData;

--

end if;

end if;

when "10" =>

-- scale is 2

 --

-- PANNING FOR SCALE 2

--

if effectsType = "01" then -- do Pannning

if effectsCtrl = '1' then -- shift sound to right

if dataIn(29) = dataIn(30) and dataIn(29) = dataIn(31) then

dataInInt1 <= dataIn(29 downto 16) & "00" & dataIn(15) & dataIn(15) & dataIn(15 downto 2);

else

dataInInt1 <= (31 => dataIn(31), others => NOT dataIn(31));

end if;

else -- sound to left

dataInInt1 <= dataIn(31) & dataIn(31) & dataIn(31 downto 18) & dataIn(13 downto 0) & "00";

end if;

-- VOLUME CTRL

elsif effectsType = "00" then -- change volume

if effectsCtrl = '1' then -- increase volume

-- quadrupled volume with capping for overflow

if dataIn(29) = dataIn(30) and dataIn(29) = dataIn(31) then

dataInInt1 <= dataIn(29 downto 16) & "00" & dataIn(13 downto 0) & "00";

else

dataInInt1 <= (31 => dataIn(31), others => NOT dataIn(31));

end if;

else -- decrease volume to 1/4 times the original data

dataInInt1 <= dataIn(31) & dataIn(31) & dataIn(31 downto 18) & dataIn(15) & dataIn(15) & dataIn(15 downto 2);

end if;

--

-- DO ECHO FOR SCALE 2

--

elsif effectsType = "10" then

i := 0;

-- delay 10 clock cycles

delay_Buffer(0) <= delay_Buffer(1);

delay_Buffer(1) <= delay_Buffer(2);

delay_Buffer(2) <= delay_Buffer(3);

delay_Buffer(3) <= delay_Buffer(4);

delay_Buffer(4) <= delay_Buffer(5);

delay_Buffer(5) <= delay_Buffer(6);

delay_Buffer(6) <= delay_Buffer(7);

delay_Buffer(7) <= delay_Buffer(8);

delay_Buffer(8) <= delay_Buffer(9);

delay_Buffer(9) <= dataIn;

-- decay is 1/2

dataInInt1 <= delay_Buffer(0)(31) & delay_Buffer(0)(31 downto 19)

& delay_Buffer(0)(15) & delay_Buffer(0)(15 downto 1) + dataIn;

else

 dataInInt1 <= dataIn;

--

 -- NOISE GATING

--

--else

--

dataInInt1 <= dataIn;

--

revisedData <= dataIn + "00001100000000000000110000000000";

--

if effectsCtrl = '1' then --NOISE GATING

--

if (revisedData < "00001100000000000000110000000000"

--

or revisedData > "11110011111111111111010000000000") then

--

 dataInInt1 <= "00000000000000000000000000000000";

--

else

--

dataInInt1 <= revisedData;

--

end if;

--

else

 -- WITHOUT NOISE GATING

--

dataInInt1 <= revisedData;

--

end if;

end if;

when "11" =>

-- scale is 3

--

-- PANNING FOR SCALE 3

--

if effectsType = "01" then

if effectsCtrl = '1' then -- shift sound to right

if dataIn(28) = dataIn(29) and

dataIn(28) = dataIn(30) and

dataIn(28) = dataIn(31) then

dataInInt1 <= dataIn(28 downto 16) & "000" & dataIn(15)

& dataIn(15) & dataIn(15) & dataIn(15 downto 3);

else

dataInInt1 <= (31 => dataIn(31), others => NOT dataIn(31));

end if;

else -- sound to left

dataInInt1 <= dataIn(31) & dataIn(31) & dataIn(31) & dataIn(31 downto 19) & dataIn(12 downto 0) & "000";

end if;

-- VOLUME CTRL

elsif effectsType = "00" then

-- Change Volume

if effectsCtrl = '1' then -- Increasing volume

-- 8 * original volume with capping for overflow

if dataIn(28) = dataIn(29) and

dataIn(28) = dataIn(30) and

dataIn(28) = dataIn(31) then

dataInInt1 <= dataIn(28 downto 16) & "000" & dataIn(12 downto 0) & "000";

else

dataInInt1 <= (31 => dataIn(31), others => NOT dataIn(31));

end if;

else

-- Decreasing volume

dataInInt1 <= dataIn(31) & dataIn(31) & dataIn (31)

& dataIn(31 downto 19) & dataIn(15) & dataIn(15) & dataIn(15)

& dataIn(15 downto 3);

end if;

--

-- DO ECHO FOR SCALE 3

--

elsif effectsType = "10" then

i := 0;

-- delay 10 clock cycles

delay_Buffer(0) <= delay_Buffer(1);

delay_Buffer(1) <= delay_Buffer(2);

delay_Buffer(2) <= delay_Buffer(3);

delay_Buffer(3) <= delay_Buffer(4);

delay_Buffer(4) <= delay_Buffer(5);

delay_Buffer(5) <= delay_Buffer(6);

delay_Buffer(6) <= delay_Buffer(7);

delay_Buffer(7) <= delay_Buffer(8);

delay_Buffer(8) <= delay_Buffer(9);

delay_Buffer(9) <= dataIn;

-- decay is 1/4

dataInInt1 <= delay_Buffer(0)(31) & delay_Buffer(0)(31)

& delay_Buffer(0)(31 downto 18)

& delay_Buffer(0)(15) & delay_Buffer(0)(15)

& delay_Buffer(0)(15 downto 2) + dataIn;

else

 dataInInt1 <= dataIn;

 end if;

when others =>

dataInInt1 <= dataIn;

-- NOISE GATING

--

--
else

--

dataInInt1 <= dataIn;

--

revisedData <= dataIn +
"00000011000000000000001100000000";

--
if effectsCtrl = '1' then --NOISE GATING

--

if (revisedData <

"00000011000000000000001100000000"

--
 or revisedData > "11111100111111111111110100000000") then

--
 dataInInt1 <="00000000000000000000000000000000";

--

else

--

dataInInt1 <= revisedData;

--

end if;

--
else

-- WITHOUT NOISE GATING

--

dataInInt1 <= revisedData;

--
end if;

end case;

end process;

 -- changes data precision of playback data.

dataInInt2 <= dataInInt1; -- 16 bits precision

--when precision = '1' else dataInInt1(31 downto 24) & X"00" & dataInInt1(15 downto 8) & X"00";

end audio_arch;

4. VHDL Simulations

We modify the original project using Xilinx Project Navigator and selected VHDL Module to add codes to it. The project can be compiled by simply clicking on “implement design” (a built-in tool provided in Xilinx). This step will create a remap.bit file. Then, we use “constraint editor” to load an UCF file, which matches pin numbers to the board. The project would be loaded into FPGA board by using “gxsload.” The audio output would show if the design works. During the design process, we found that compiling the project can be very slow if we implement functions in it.

5. Conclusions

This enhanced audio project added two amplitude effects, volume control and panning, and two time delay effects, echo and phasing. During the working process, we learnt to design a digital system with high-level language (VHDL). This is a very interesting and challenging project. It gives us an opportunity to understand hardware design.

6. References

Suggestion from TA’s posting on class official website:

http://users.iafrica.com/k/ku/kurient/dsp/algorithms.html
VHDL Reference Manual

(found on lab computer)

Appendix
Audio.vhd

Audiotop.vhd

Player.vhd

Sraminterface.vhd

Remap.vhd

Recorder.vhd

Schedule for Project Development

	Week of :
	To do:

	2/16
	Decide to enhance the original audio project. Effects added are amplitude effects (including volume control and panning/ping-pong) and time delay effects (including echo and noise gating). Meet with Prof & TA to discuss project and schedule. Evaluate the use of the existing Xilinx platform to implement project. Use lab facilities to initiate project development.

	2/23
	Meet with Prof/TA to discuss project progress and status of development platform as target for implementation.

	3/1
	Mid-project level review in class. Project’s amplitude effects have been written and tested.

	3/8
	Give a presentation on the project done so far.

	3/15
	Focus on implementing project’s time delay effects. Spend a lot of time working on echo.

Class presentations and reports due on 3/23/04.

EffectCtrl

EffectType(1)

AND

NOT

SL2

 OR

Enable

EffectType(0)

NOT

 OR

AND

 OR

SL1

EffectCtrl

NOT

AND

AND

NOT

EffectType(1)

EffectType(0)

EffectType(0)

Echo

AND

NOT

EffectType(1)

Reg4

Reg3

Reg2

Reg1

In(31:0)

Echo

Reg7

Reg8

Reg6

Reg5

Reg10

Reg9

Out(31:0)

Clock

clock

Echo

Delay Buffers

clock

Shifter1

Enable

SL1

Shifter2

RegOut

Read

Write

DataIn(31:0)

DataOut (31:0)

AddressOut (19:0)

AddressIn(19:0)

DataIn(31:0)

DataInInt1(31:0)

Echo

DataInInt1(31:0)

0

1

 Selector

Enable

SL2

Control

clock

Data(15:0)

Data(31:16)

Combine

SramInterface

March 18, 2004

Dixie Xue & Wei Zhang

1
5

