
1

BBS-ONE: Bulletin Board and Forum System for
Mobile Opportunistic Networks

Kiwoon Sung, Suman Srinivasan, and Henning Schulzrinne

Abstract—Electronic bulletin boards and forum systems are com-
monly used to exchange opinions, news, event notifications, docu-
ments and other media on the Internet. However, such systems usually
require a central server hosting the content. Such servers cannot be
installed in ad-hoc opportunistic wireless networks, which are created
when mobile devices congregate to form a localized and short-lived
network without Internet connectivity.

We present BBS-ONE, a bulletin board system for opportunistic
networks, and describe its service model and implementation. BBS-
ONE works in highly mobile opportunistic networks, considers the
mobility of nodes, and allows nodes to operate even when churn
is high when nodes join and leave the network. It transparently
disseminates public data and posts and persists desired data by
operating in a peer-to-peer fashion and using a store-carry-forward
model of communication. It maintains the data consistency needed
for a BBS and forum system. We have implemented the application
on generic desktop OS platforms (Windows, Linux, Mac) as well as
a mobile platform (iPhone/iPod).

Keywords—BBS, forum, opportunistic network, mobile ad hoc
network, opportunistic network, ipod, iphone, implementation

I. INTRODUCTION

Bulletin board systems are an important tool for collab-
oration and information exchange among peers. The paper-
based bulletin board systems on college campuses, apartment
complexes and other social areas provide a way for students,
neighbors and peers to interact with each other and allow
others to be mutually aware of events going on as well as
facts that may interest others.

In recent years, with the rise of the Internet, the BBS has
come to refer to a central, online repository or forum where
users can post messages and files to exchange with other
members of the board. The online forums or BBSes are often
associated with a specific subject, topic or neighborhood, and
provide similar online community features for its members.

However, with the growing use of opportunistic networks,
where mobile nodes join together to form network islands
with ad-hoc wireless connectivity, the traditional BBS model
begins to fail. In the previously described scenarios, the
BBS model only works because of the presence of a central
server that handles the forum and community information. In
opportunistic networks, there is no such central server, and to
add to the problem, there is high mobility and churn rate, with
nodes leaving and joining the network frequently.

Kiwoon Sung is with Columbia University, New York, USA, email:
kiwoon.sung@gmail.com

Suman Srinivasan is with Columbia University, New York, USA, email:
sumans@cs.columbia.edu

Henning Schulzrinne is with Columbia University, New York, USA, email:
hgs@cs.columbia.edu

Fig. 1. Usage Scenario for the BBS-ONE. A mobile node moves from
one isolated opportunistic network to another one, carrying desired
information to a location where no connection to the infrastructure.
Dotted lines indicate the direction of the movement of the node in and
out of an area with wireless ad-hoc connectivity.

In this paper, we explore how we successfully built a real-
world BBS application for opportunistic networks, called BBS
for Opportunistic Networks (BBS-ONE). BBS-ONE allows
users of mobile devices, such as iPhones, to share and dis-
tribute content with their local community connected by an
opportunistic network, such as an 802.11 ad-hoc network.

By operating in a peer-to-peer manner, BBS-ONE provides
BBS and forum functionality without requiring a central
server. Our service model also enables us to keep data per-
sistent, even when mobile nodes move across networks, thus
fulfilling the basic requirement of a forum which allows for
information to be spread in the local community.

We present our design of the system model of BBS-ONE
to handle opportunistic networks and the state transitions that
occur when nodes move in and out of the network.

In Section II, we introduce the concept of BBSes and forum
software. In Section III, we describe the service model on
which this system is based, in order to keep, disseminate
and carry data for BBS. In Section IV, we show how the
system was designed and implemented, with details of the
specific technologies involved. Screenshots of the BBS-ONE
application on these different platforms are also included.

In Section V, on related work, we compare this system to
various services that provide information sharing, online fo-
rums, traditional BBSes, and synchronization applications for
portable devices such as PDA and mobile phones. Section VI
and VII provide our thoughts on future work and conclusion.



Fig. 2. System Architecture of the BBS-ONE system. The diagram shows the networking, service discovery and rule validators, the post and node
managers and how the components interact.

II. FORUMS AND BBS SOFTWARE
Forums and bulletin boards are a central place on college

campuses and other settings where students and peers can post
information about events and general information that might
be interest to their peers. These often form the central “water
cooler” in campus environments where students can share
information about events that happen throughout campus.

Newsgroups (list servers) and web-based forums became
quickly popular on the Internet, providing a forum for online
communities to form and discuss topics and events, based on
either interests or locality.

Generic BBS systems utilize a centralized system hosted on
one or more physical servers which is controlled by system
administrators and forum administrators. However, often, users
are allowed to generate, post and exchange content to their
heart’s content, unless such content violates the terms set by
the forum administrators.

BBSes can be expanded one step further to become social
networking sites used to build online communities. The most
prominent use of these online communities recently has been
seen during political events, such as DeanSpace [4] and
Facebook Statuses for Obama [5].

A. BBS IN OPPORTUNISTIC NETWORKS
With the rising use of mobile devices, opportunistic net-

works are more commonplace. For example, in highly dense
cosmopolitan areas and underground subways, it is hard to
get persistent high-bandwidth connections, such as 3G [14]
connectivity, but opportunistic networks using wireless ad-hoc
technologies can be formed easily.

Take an example of two or more users on a subway or a
remote train station with very poor 3G reception. The users
want to share data with each other, but are not able to because
of the lack of connectivity. However, the users are able to
connect with each other through a wireless 802.11 [1] ad-hoc
connection. Unfortunately, since most forum software relies on
the use of the Internet or a central server architecture, without
software written to work specifically in this situation, the users
will not be able to share information with each other.

BBS-ONE enables us to share information in such oppor-
tunistic networks. Unlike the traditional BBS, our system does

not require a central server machine to store all data from
users.

Our implementation needs to work on devices running on
opportunistic networks with high mobility and churn rates and
in the absence of a central server. Hence, we need a unique
way of solving the problem of running a BBS or forum. We
need to solve the issue of sharing data in a disconnected
network. The nodes need to be aware of such mobility, and
be able to recover gracefully in case of any abrupt cessation
of communication.

III. SERVICE MODEL
The fundamental requirements of bulletin board system are

providing a virtual space where people can interact with others
by sharing information of interests. BBS-ONE fulfills this
requirement. Throughout the system, data management and
networking schemes are used to provide bulletin board and
forum features.

Figure 1 shows one possible scenario in which a mobile
user whose device is the part of the system enters and leaves
opportunistic networks enroute to a location where no wireless
service is available. BBS-ONE works in both networked area
(where the node is connected to an infrastructure such as
the Internet) as well as a disconnected area (where the only
connections are local connections). These scenarios show an
example of the store-carry-forward scheme scenario, and the
system can be utilized for the different use cases. User A stores
information acquired based on a user’s preferences consisting
of keywords.

A. DATA MANAGEMENT
1) POST HANDLING: A post is a user submitted message

in traditional BBSes, and we define it the same way for
BBS-ONE. A post is the conceptual elementary entity of
information that users want to share or to acquire through
this system. With a post, user can describe their idea and
information as text with attached resources such as images,
music, and possibly other types of files. We regard a post as
the elementary form of information in this system, in that all
operations, such as creating and sharing a post, are applied
to posts based on privileges which can be determined by



Fig. 3. Life Cycle of a Post in the BBS-ONE system.

examining the author of a certain post and other permissions
set on that particular post.

It also has a life cycle that a post must follow. According
to the current state of a post in the life cycle, BBS-ONE
determines if a specific post can be shared, edited, or limited
in terms of dissemination.

Figure 3 shows the life cycle of a post. The vertices show
the state of a post and the directional edge of the vertices
connect to the next possible state. A post is always in one of
the states described here.

Each post has a field to keep information about the nodes
which the post traversed and other trace information. It is
possible for several nodes to acquire the same post containing
the same content at a certain time. However, it is possible
for several copies of an identical post to have different trace
information in it, because it is quite common for a post to
pass traverse different routes.

B. Deployment

Our BBS-ONE can operate in two modes: a client-server
mode in the presence of an stationary node, and a true P2P
mode in the absence of an stationary node.

1) Operation in presence of stationary node: The BBS-
ONE stationary node refers to a node that is placed in a static
location and does not move. Such a stationary node could
be deployed at locations with high traffic, such as subway
stations. The stationary node stores data from incoming nodes
and forwards data to newcomers. When a node comes in
a network area, it finds the information of a neighboring
stationary node through service discovery. When it finds an
stationary node, the node sends all posts to that stationary
node, including metadata to avoid duplication.

2) P2P operation: In the absence of an stationary node,
there is no facility for storing data, so all operations share data
among the mobile nodes and they work in a totally peer-to-
peer fashion. Every node needs to find connection information
using multicast service discovery, and it directly connects to
the peer node to exchange posts. When a node wants to acquire
a post containing the desired content, it first sends search
keywords to neighboring nodes found during the discovery
phase, and then one of nodes that has the related posts sends
an offer to it in order to get an acceptance response.

C. Networking
We try to relate the various networking operations to

existing HTTP and REST [6] features. This way, not only
does our application relate to existing standards, but it might
be possible in the future for some sort of compatibility with
existing networking and web forum applications, for example,
using XML-RPC and other web service methods.

1) Pull-based: We have made the pull-based approach
the default option for exchanging data on mobile devices.
This has one major advantage, which is that clients can
access information when they need it. However, there is also
one major disadvantage, since the nodes will not be easily
aware of any network connection below the application layer.
Furthermore, in order to check if there are any updates on
posts in nearby peers, clients will need to constantly check
for updates by polling, which might reduce the battery life.
Traffic will increase based on the number of existing nodes,
no matter how many updates nodes have.

2) Push-based: The main advantage of push-based ex-
changing is that updates will arrive when available, not when
needed and hence continuous polling with all other nodes
is not needed. Being notified of updates is an efficient way
for being made aware of when communication has to be
established. However, in contrast to the previous pull-based
approach, the traffic to inform a node of updates will increase
as a function of the number of nodes holding updates.

Furthermore, one of characteristics that this system has, is
that providing information (which is pushed to the reader)
is determined according to the preference of the reader. The
preferences are supposed to be multicast first, before the
information is delivered.

3) Publish/Subscribe: Our BBS-ONE system does not rely
on the publish/subscribe messaging paradigm, in that data
holder always needs to know where it should push data.
Subscribers in the system also multicast their keywords of
interest. Publishers get to know which nodes are interested
in certain contents or data, and initiate exchange of posts by
offering them data which are supposed to be pushed to the
subscribers.

Also, a stationary node can act as a stationary or mobile
repository. This node is able to perform a store-and forward
function to deliver data from original authors to readers. Thus,
even if nodes that make contact with this access point are
disconnected with each other, they are still able to receive
information from nodes that came earlier.

4) Epidemic Dissemination: In epidemic dissemination, a
peer node finds information about how it can communicate
with another node using connection information obtained
during the discovery phase, and is able to initiate a connection
with a specific node.

When a node has a post to be published but there no access
point in the network that the node has just found, it picks up
another node randomly to send posts for advertisements and
public posts in order.

However, epidemic dissemination cannot be applied to every
type of data in the system, since the right to choose which
posts can be delivered is on the receiver, not on the data holder.
Every node is restricted by how many posts it can disseminate,



Fig. 4. The first image shows the nodes that are discovered via service
and node discovery. The second image shows the list of posts in the
various nodes.

Fig. 5. The first image shows the lists of posts in the repository. The
second image shows the contents on a post that has been chosen by the
user.

and this is based on how much it contributes when it comes
to publishing valid articles.

IV. DESIGN AND IMPLEMENTATION

In this section we explain our design and implementation of
BBS-ONE for two platforms, Java virtual machine and iPhone,
which allow the given service model described in the previous
section, to work.

A. Architecture Overview
Service discovery and the 7DS [11] and BonAHA [13]

frameworks are the architectural components that support the
system’s working in an opportunistic networking environment,
while abstraction layers and the model-view-controller pattern
describe how the system has been written from the perspective
of actual implementation.

Figure 2 shows the overall architecture of BBS-ONE.
1) SERVICE DISCOVERY: In order to develop a frame-

work for exchanging information about nodes entering and
leaving the network, as well as the individual properties of
the nodes, we looked to service discovery as an example
of discovering and communicating with other nodes in the
network.

Service discovery refers to protocols which enable auto-
matic detection of devices and services on a computer network.
Service discovery protocols range from lightweight protocols
such as DHCP [10] to heavyweight protocols like JXTA [7].

However, service discovery protocols that can be applied
to writing ad-hoc applications that run in highly mobile or
disconnected networks are very few in number. We use Apple’s
Bonjour implementation of Zero Configuration Networking
[2], which seems to be the most mature and stable protocol
set. Bonjour uses multicast DNS (mDNS) messages [3] to
send information on the local network and detect presence
or absence of nodes. It also enables us to find out metadata
or properties of the nodes using DNS TXT records.

However, Bonjour, in its native form, is not suitable for
ad-hoc applications because it is primarily concerned with
changes in the network, such as services entering and leaving
the network. Hence, to overcome these shortcomings, we have
developed our own stack of applications and frameworks on
top of the Bonjour protocols to enable applications to run in
opportunistic networks.

2) BonAHA framework: For developing the BBS-ONE ap-
plication, we use a framework called BonAHA [13], which
provides an easy and intuitive middleware for application
developers to develop networking applications that run on
opportunistic networks and can handle nodes entering and
leaving the network.

We are using a modified version of the BonAHA framework
in the BBS-ONE application. The original version of BonAHA
runs on Windows, Linux and Mac OS systems, and in order
to create the BBS-ONE system to run on iPod and iPhone
devices, we rewrote portions of the framework in Objective-C
to provide the functionality needed for writing the BBS-ONE
application.

B. Implementation

To implement BBS-ONE, we developed a command-line
version of the system in Java that runs on Windows, Linux
and Mac OS platforms. This Java version is built using our
BonAHA framework and allows a user to create, edit and share
his or her posts with others.

The iPhone implementation of the BBS-ONE includes a
GUI that is very similar to other iPhone applications. The
implementation allows a user to see other posts on the network
and be able to view them through a scroll screen based
user interface. The iPhone implementation was written in
Objective-C.

Because the iPhone platform does not currently support
Java, we rewrote portions of the BonAHA library in Objective-
C and integrated it into our application in order to develop the
discovery mechanism of the BBS-ONE application.

The basic components of the implementation are Zero Con-
figuration (Zeroconf) using Apple’s Bonjour implementation,
an internal HTTP proxy (a HTTP server) and its RESTful
service extension, a cache manager as well as data service,
and user interfaces, implemented both on Java virtual machine
using JRE1.5 and iPhone OS 2.1 or later.



Fig. 6. The XML template for a post that can be fed to an Atom feed
for syndication.

Fig. 7. The major fields for a post, and their types in an XML schema
document.

1) Data Format and Identification: A post is identified
based on fields such as author information, the title, the
description of the post and so forth. These fields contain
hashed values. Some fields in a post such as trace information
cannot be subjected to hashing in order to identify a post. We
used MD5 as the hash function to identify a post.

We have attempted to make BBS-ONE meet the spirit of
Web 2.0 and be as easy to reverse engineer so that alternative
implementations compatible with BBS-ONE can be built. The
default format of files presenting a post is based on XML.
The schema is described by XML Schema definition language
(XSD) [15] and the publication of the post information con-
tained in each node is based on the Atom feed format [12].

Figure 6 describes the schema and XML template used to
represent a post in the system. Figure 7 shows the structure
of a post and the major fields, and their types.

2) Versioning and Expiration: Once a post leaves its origi-
nal node, it is not easy for the author of the post to do any work
on it, especially when the Post arrives on another network and
it has been completely isolated from the connected environ-
ments. In many cases, disseminated data cannot be reached by
any other nodes that work in physically separated networks.

Accordingly, it is more reasonable that, if a post has been
pushed to another node, it is regarded as an independent data
set that should identify itself. In such a case, any modification
generates a new version of the original post.

3) Platforms: We wanted to implement the BBS-ONE
application on a variety of platforms in order to prove its
usefulness, while at the same time, meet reasonable goals and
deadlines. Hence, we built the application using Java, which
we have tested on Windows, Linux and Mac OS. It is also quite
likely that this application runs on other operating systems and
platforms that are Java compatible.

In choosing a mobile platform, we chose the iPhone/iPod
platforms because it is widely deployed [16].

One major difference in the HTTP proxies on the iPhone
and the command-line Java version of BBS-ONE is the socket
layer underlying the application layer protocol. The Java ver-
sion can use multiple threads and blocking sockets, but in the
iPhone version, the implementation of the HTTP server relies
on an asynchronous style or non-blocking sockets. However,
this does not have any major impact on our implementation.

4) Mobile Nodes: For the iPhone OS, BBS-ONE imple-
ments only the mobile reader version, allowing a user to
publish, advertise and gather post information from either
stationary nodes or other mobile nodes. The GUI for this
version is based on the native user interface on iPhone as
well as a web browser page displaying posts.

Figure 4 shows the list of the neighbor nodes available in
the network that the user has just arrived in. The names of the
nodes are provided according to the auto-naming rules of the
Bonjour discovery protocol stack. When a user selects one
of the discovered nodes, the screen shows the list of posts
that the selected node contains. Figure 5 shows the screen
when a user selects a post from the list given in Figure 4. The
final form of the post is the one that has been translated by
XML to HTML, and the contents appear on a WebKit webpage
component available on the iPhone.

V. RELATED WORK

The original BBSes were virtual communities created when
individuals or service provides allowed people in the local
communities to dial-in and connect to their systems, download,
and upload files and other data, as well as share information
with others in the community.

USENET [9], which evolved from UUCP, allowed users to
read and post messages to categories known as newsgroups. It
supported threaded discussions and could be accessed by any
compatible newsreader software. USENET is widely regarded
as a precursor to today’s web forums.

However, with the advent and popularity of the Internet,
Internet-based BBS systems became more and more popular. A
huge number of forums now exist around the world, spanning
almost every conceivable topic. Due to the open nature of these
forums, several have implemented some form of monitoring
and checking.

Among forum use on disconnected, ad-hoc or opportunistic
networks, there is very little work. The primary reason for this
seems to be that forums are naturally oriented towards online,
long-term communities.

The only available work similar to ours in this field seems
to be the JXTA forum software [8]. This forum software, built
on top of Sun Microsystems’s JXTA protocol and framework,



implements a forum software by converting an existing client-
server system into use in a P2P system. However, even this
system requires the use of a connected network. The authors
state, “total decentralization is often neither necessary nor
desirable.” However, opportunistic networks are completely
decentralized and mobile. Further, the system requires a nam-
ing service, which requires some long-term or super nodes, as
well as setting up peer groups to avoid a flat search structure.
This is not possible in opportunistic networks either.

VI. DISCUSSION AND FUTURE WORK

In our system, we have assumed that users are authenticated
by providing their email address and password. In this case, it
is necessary to develop a particular authentication system for
BBS-ONE separately.

Exchanging personal contacts in places such as conference
halls or public transportations might be one way to utilize the
peer-to-peer exchanging information in an isolated opportunis-
tic network, if permissions are considered.

We can also consider the functionality of supporting con-
current transmission of posts, and limiting the number of times
a post moves from/into other nodes. Preventing spamming
using identical posts and prohibited words also needs to be
considered. Also, a method for handling partially transmitted
posts needs to be devised.

VII. CONCLUSION

In this paper, we presented BBS-ONE, a system that enables
forum and BBS functionality in opportunistic networks that
are highly mobile and disconnected from the network. BBS-
ONE allows users to exchange information and posts even
in the absence of central servers or connection to wide-area
networks.

We also presented our implementation of BBS-ONE on
desktop platforms using our Java implementation, as well as
on the iPhone and iPod platforms.

We believe that the BBS-ONE application provides a unique
and novel implementation of BBS and forum functionality in
a new networking scenario that is rapidly evolving yet has
very few functional applications. BBS-ONE, as with our other
applications for opportunistic networks, will provide users in
disconnected and opportunistic networks to be able to share
data with relative ease without needing some physical form of
data transmission or file copying.

We have attempted to build BBS-ONE on as many standard
technologies as possible, such as the Bonjour protocol stack,
W3C standards (HTTP, XML and related technologies), and
common concepts of architecture such as REST style and
MVC pattern so that compatible implementations for the same
or other platforms can be easily built.

VIII. ACKNOWLEDGEMENT

This work was supported by the National Science Founda-
tion (NSF) under Grant 04-54288.

REFERENCES

[1] IEEE 802.11, the working group setting the standards for wireless lans.
http://www.ieee802.org/11/.

[2] Zero Configuration Networking (Zeroconf). http://www.zeroconf.org/.
[3] S. Cheshire and M. Krochmal. DNS-Based Service Discovery. IETF

draft, February, 2004.
[4] Civicspacelabs. civicspacelabs.org.

http://civicspacelabs.org/services main.
[5] Facebook. Facebook. http://www.facebook.com/.
[6] R. T. Fielding. Architectural Styles and the Design of Network-based

Software Architectures. PhD thesis, UNIVERSITY OF CALIFORNIA,
2000.

[7] Li Gong. JXTA: a network programming environment. Internet
Computing, IEEE, 5(3):88–95, 2001.

[8] Emir Halepovic and Ralph Deters. Building a P2P forum system with
JXTA. In P2P ’02: Proceedings of the Second International Conference
on Peer-to-Peer Computing, page 41, Washington, DC, USA, 2002.
IEEE Computer Society.

[9] M. Horton and R. Adams. Standard for interchange of usenet messages.
Technical report, RFC 1036, 1987.

[10] A.J. Mcauley and K. Manousakis. Self-configuring networks. In
MILCOM 2000. 21st Century Military Communications Conference
Proceedings, volume 1, pages 315–319 vol.1, 2000.

[11] A. Moghadam, S. Srinivasan, and H. Schulzrinne. 7ds-a modular plat-
form to develop mobile disruption-tolerant applications. In Second IEEE
Conference and Exhibition on Next Generation Mobile Applications,
Services, and Technologies (NGMAST 2008), September 2008.

[12] R. Sayre M. Nottingham. RFC 4287 - the atom syndication format.
http://tools.ietf.org/html/rfc4287, December 2005.

[13] A. Moghadam S. Srinivasan and H. Schulzrinne. BonAHA: Service
Discovery Framework for Mobile Ad-Hoc Applications. In IEEE
Consumer Communications & Networking Conference 2009 (CCNC’09).
IEEE, 2009.

[14] C. Smith and D. Collins. 3G Wireless Networks. McGraw-Hill
Professional, 2001.

[15] H. S. Thompson, D. Beech, M. Maloney, and N. Mendelsohn. XML
Schema Part 1: Structures. W3C Recommendation, 2, 2001.

[16] Los Angeles Times. iPhone becomes top handset in U.S., passing RAZR.
November 2008.

Kiwoon Sung is a software engineer in Unified Communication Center
at Samsung SDS. He is working on developing FMC (fixed and mobile
convergence) solutions to realize mobile office environments using smartphone
and mobile devices. He has a M.S. in Computer at Columbia University, and
a B.S. from Korea University.

Suman Srinivasan is a fifth-year PhD candidate in the Computer Science
department of Columbia University . He works under Dr. Henning Schulzrinne
in the Internet Real Time Laboratory. Suman also has a M.S. from University
of Florida (U.S.A.) and a B.E. from University of Madras (India).

Prof. Henning Schulzrinne , Levi Professor of Computer Science at
Columbia University, received his Ph.D. from the University of Massachusetts
in Amherst, Massachusetts. He was an MTS at AT&T Bell Laboratories and
an associate department head at GMD-Fokus (Berlin), before joining the
Computer Science and EE departments at Columbia University. He served
as chair of Computer Science from 2004 to 2009.


