

CS258f Project Report
Kenton Sze
Kevin Chen
06.10.02
Prof Cong

Multi-level Quadratic Placement for Standard Cell Designs

Project Description/Objectives:

 The goal of this project was to provide an algorithm to produce an optimized
VLSI placement of a circuit using a multi-level quadratic placement scheme of our own
choice. We were to select and implement a C++ coarsening/uncoarsening scheme as well
as a quadratic initial placement and refinement algorithm. A program (Domino) was
provided to generate a detailed placement from our global placement. Our objective was
to minimize the total wirelength using the half-perimeter bounding box model as well as
the total runtime of our placement scheme. For comparison, we were given seven
benchmark circuits on which to run our algorithm as well as the results of Gordian and
Domino.

General Overview of Existing Placement Methods:

With regards to the problem of circuit placement, we find that since it is a
classical problem in VLSI physical design, various effective placement tools have been
proposed [5,6,7,8]. Simulated Annealing is one well-known placement method which
can handle complex design constraints. However, the annealing process [6] is slow and
moves only a small numbers of cells in each step. Also, as the design size increases, its
runtime and quality do not follow as well.

Another traditional approach is quadratic programming-based placement
techniques [5] which are very efficient. These provide a good initial placement for many
situations. For a cell count greater than 100,000, the multilevel approach for circuit
placement [8] demonstrates great efficiency. The idea is to cluster the original graph
using a coarsening scheme (mentioned below) and thus reducing the problem size
(number of distinct elements in the graph). We can then solve the problem efficiently at
the coarsest level and perform declustering and refinement at each level until the graph is
uncoarsened to its initial state.

 When selecting an existing coarsening scheme, we had many choices which
included Edge Coarsening (EC), Hyperedge Coarsening (HEC), Modified Hyperedge
Coarsening (MHEC), and FirstChoice (FC). From the above schemes, detailed in
�Multilevel k-way hypergraph partitioning�, we selected FirstChoice as it was the scheme
derived from the others and was created to solve certain problems plaguing the other
schemes, such as the fact that both EC and HEC schemes can cause the destruction of
natural clusters in the hypergraph.

Description of methods:

 Through the use of a C++ STL program, we were able to model and manipulate
the circuit data (nets, cells, groups, etc.). We began by using the given parser program to
read in the circuit files. We then created our data structure and member functions in the
parser source files and then created separate files for the various procedures such as
coarsening, refinement, and final placement.
 For the coarsening/uncoarsening scheme, we used the FirstChoice algorithm
detailed in the papers by Karypis et. al [3,4]. In this scheme, we traversed each cell in the
circuit and grouped it with a cell within the same net which, when combined, produces
the maximum edge-weight. When a pair of cells are grouped, they become a single
element. Thus, the node count in the circuit decreases due to coarsening. When we reach
a pre-specified level of coarsening (limited by the number of distinct elements after
grouping), we can begin the initial placement. After the initial placement, we can
uncoarsen (expand) the groups in the reverse order in a series of steps and then use
refinement on the elements. When the uncoarsening/refinement is complete, this results
in our global placement result, which we then run through Domino to generate our final
detailed placement result.
 For our placement scheme, we used quadratic minimization of the wirelengths
within each cell using a center of mass calculation. For each net, we calculated a center
of mass and attempted to minimize the wirelengths connecting the center of mass to the
individual cells. We used a quadratic solver with the conjugate gradient method with
preconditioner to solve the problem efficiently. After examining the open-source
LASPACK software, we decided to implement our own quadratic solver as it provided us
with more flexibility and allowed us to adapt it well to our problem. We tried both the
Jacobi, SSOR, and ILU preconditioners. We found experimentally that the ILU
converged much faster for the number of iterations in the conjugate gradient method.
However, the Jacobi preconditioner was much faster than the ILU and SSOR in terms of
CPU runtime and consumed less memory.

 After solving the quadratic placement, we then used a greedy approach for slot
assignment, where we first sorted the x-coordinate values of the cells to place them into
their respective columns. Then, we sorted the cells in each column by their y-coordinate
values. Finally, we utilized a discrete local refinement to further reduce half-perimeter
wirelength by examining the neighbors to a cell and swapping locations with it if it
causes the maximum reduction in wirelength among all neighbors. For our refinement
algorithm, a neighbor is defined as a cell within the square area around a particular cell of
arbitrary distance. We do this repeatedly at the center position until there are no possible
reductions in wirelength due to a swap. This creates a tendency for all cells to move to
their optimum positions within this local area.

Circuit characteristics:

Circuit #cells #nets #pads Max cell degree Max net size Cell ht # rows
avqsmall 21854 30038 64 8 4042 116 80
avqlarge 25114 33298 64 8 4042 116 86
ibm07 45639 48117 287 98 25 10 151
ibm10 68685 75196 744 137 41 10 185
ibm14 147088 152772 517 270 33 10 1008
ibm17 184752 189581 743 81 36 10 303
ibm18 210341 201920 272 97 66 10 324

Gordian/Domino results:

Circuit #cells #nets Gordian w ireInitial Domino After Domino Gordian runti Domino runtimTotal runtime Total runtime
avqsmall 21854 30038 1.30E+07 1.22E+07 1.13E+07 1312.417 399.267 28.528 0.48
avqlarge 25114 33298 1.45E+07 1.35E+07 1.26E+07 1631.467 307.1 32.309 0.54
ibm07 45639 48117 1.33E+07 1.18E+07 1.09E+07 10843.45 180.967 183.740 3.06
ibm10 68685 75196 2.26E+07 2.00E+07 1.88E+07 23868.2 320.1 403.138 6.72
ibm14 147088 152772 5.03E+07 4.31E+07 4.08E+07 60208.35 1181.533 1023.165 17.05
ibm17 184752 189581 8.93E+07 7.36E+07 6.79E+07 139398.4 1714.6 2351.883 39.20
ibm18 210341 201920 8.88E+07 5.78E+07 5.37E+07 202217.3 2056.867 3404.570 56.74

Our results:

Circuit Initial Domino After Domino
program
runtime: Domino runtime

Total
runtime
(min)

Total
runtime (hrs)

avqsmall 1.52E+08 5.35E+07 2240 516 45.933 0.77 *
avqlarge 1.69E+08 5.92E+07 2520 324 47.400 0.79 *
ibm07 2.18E+07 1.90E+07 4506 136 77.367 1.29 +
ibm10 4.30E+07 3.74E+07 11059 252 188.517 3.14 +
ibm14 1.01E+08 8.72E+07 15328 800 268.800 4.48 +
ibm17 1.63E+08 1.44E+08 40272 1320 693.200 11.55 +

ibm18 1.47E+08 1.30E+08 48711 1569 838.000 13.97 +
 * 20 iterations of generation of new placements in Domino
 + 10 iterations

Comparison with Gordian/Domino pair:

Circuit
Gordian
wirelength

Our init
Domino Percentage: After Domino Our final: Percentage:

G/D
runtime:

Our
runtime:

avqsmall 1.30E+07 1.52E+08 1.17E+01 1.13E+07 5.35E+07 4.72E+00 0.48 0.77
avqlarge 1.45E+07 1.69E+08 1.17E+01 1.26E+07 5.92E+07 4.70E+00 0.54 0.79
ibm07 1.33E+07 2.18E+07 1.64E+00 1.09E+07 1.90E+07 1.75E+00 3.06 1.29
ibm10 2.26E+07 4.30E+07 1.90E+00 1.88E+07 3.74E+07 1.99E+00 6.72 3.14
ibm14 5.03E+07 1.01E+08 2.01E+00 4.08E+07 8.72E+07 2.13E+00 17.05 4.48
ibm17 8.93E+07 1.63E+08 1.82E+00 6.79E+07 1.44E+08 2.12E+00 39.20 11.55
ibm18 8.88E+07 1.47E+08 1.66E+00 5.37E+07 1.30E+08 2.42E+00 56.74 13.97

Discussion of results:

 From these results, we see that our obtained wirelengths were close to two times
the Domino/Gordian pair for the ibm circuits. The avq circuits produced about four times
the wirelength and required a longer runtime. This is due to the fact that the avq circuits
have a much larger net size which causes the quadratic approximation to become
inadequate. This produces a denser matrix, which is much more calculation-intensive
with regards to computation and results in the slower runtime as well as less-than-optimal
wirelength. However, in contrast, our runtimes for the ibm circuits were well below that
of the Gordian/Domino pair.
 The FirstChoice coarsening scheme was implemented and integrated in our
program, however it was not used in our runs due to extremely long runtimes. Given
more time, we would have reduced the runtime required in the coarsening stage and this
would have helped to improve our results (both wirelength and runtime) in the avqsmall
and avqlarge benchmark circuits.

System details:

Gordian/Domino results for all circuits:

Machine name: whale.cs.ucla.edu

� SunOS whale 5.7 Generic_106541-18 sun4u sparc SUNW,Ultra-4
� Memory: 4096M real
� Processor 0 - The sparcv9 processor operates at 400 MHz
� Processor 1 - The sparcv9 processor operates at 400 MHz
� Processor 2 - The sparcv9 processor operates at 400 MHz
� Processor 3 - The sparcv9 processor operates at 400 MHz

Our algorithm for all circuits:

Machine name: symphony.cs.ucla.edu

� SunOS symphony 5.8 Generic_108528-10 sun4u sparc SUNW,Sun-Blade-1000
� Memory: 2560M real
� Processor 0 - The sparcv9 processor operates at 750 MHz
� Processor 1 - The sparcv9 processor operates at 750 MHz

Conclusion:

 Although our wirelengths were close to two times that of the Gordian/Domino
pair, there was still a benefit in our greatly decreased runtime. However, we felt there
was room for improvement in wirelength minimization. Specifying a larger local
refinement radius would also decrease wirelength at the expense of longer runtime.
Another possibility is modifying the FirstChoice coarsening algorithm for improved
efficiency. This would yield a faster runtime and reduced wirelength.

Our current algorithm produces extremely fast runtimes at the expense of
increased wirelength. This can result in a trade-off between reduced wirelength and
reduced program runtime. In the future, we can implement a scheme to further reduce
the wirelength, but causing an increase in runtime. We can then allow the user to make
the decision as to whether runtime or wirelength minimization is more important.

Our project source code can be found at the following location:

 /u/guest/knchen/CS258/finalsource

 Another copy is also located at the following locations in the event that our guest
CS accounts are deactivated before the three week period following the end of the
quarter:

 /w/grad.01/ee/kevinc/www/cs258f

or

 http://www.seas.ucla.edu/~kevinc/cs258f/

 and at

 /v/usera/nksze/project/finalb4pastecode

A description of our source files is as follows:

parser.h (298 lines) The header file for our source code
parser.cpp (294 lines) Contains the member functions for our data

structure
MLmain.cpp (250 lines) The location of our main() function
coarsening.cpp (604 lines) Contains the FirstChoice coarsening scheme
refinement.cpp (623 lines) Contains the refinement algorithm
fplace.cpp (142 lines) Contains the final placement algorithm
my_math.cpp (531 lines) Contains the custom math functions

Total program length: 2742 lines

Acknowledgements:

 Many thanks to Xin and Professor Cong for their support and advice regarding the
project.

Bibliography

[1] G. Sigl, K. Doll, and H. Spruth, GORDIAN user's guide, 1995.

[2] K. Doll and B. Riess, DOMINO user's guide, 1995.

[3] G. Karypis and V. Kumar, Multilevel k-way hypergraph partitioning, Proc. Design
Automation Conference, pp.343-348, 1998.

[4] G. Karypis, V. Kumar, and R. Aggarwal, Multilevel hypergraph partitioning:
Applications in VLSI Domain, IEEE Transactions on VLSI Systems, Vol. 7, No. 1,
March, pp.69-78, 1999.

[5] J. M. Kleinhans, G. Sigl, F.M. Johannes, and K.J. Antreich, GORDIAN: VLSI
placement by quadratic programming and slicing optimization, IEEE Trans. on
Computer-Aided Design, pp.356-365, 1991.

[6] M. Sarrafzadeh and M. Wang. �NRG: Global and Detailed Placement�. In
International Conference on Computer-Aided Design. IEEE, November 1997.

[7] W. J. Sun and C. Sechen. �A Loosely Coupled Parallel Algorithm for Standard Cell
Placement�. �. In International Conference on Computer-Aided Design, pages 137-144.
IEEE, 1994.

[8] T. F. Chan, J. Cong, T. Kong, and J. R. Shinnerl, Multilevel Optimization for large-
scale circuit placement, proc. IEEE International Conference on Computer Aided Design,
pp. 171-176, November 2000.

	Kevin Chen

