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Abstract 
 

Streaming audio has become a popular form of media 
on the Internet. As wireless personal area network 
architectures (e.g. Bluetooth) are now targeted to support 
multimedia traffic, streaming audio over these 
technologies will give rise to interesting applications. But, 
the variable nature of the wireless medium will not lend 
itself easily to supporting audio streaming l. In this paper 
we focus on Bluetooth and propose, an enhancement to 
the Bluetooth link layer ARQ mechanism to compensate 
for channel degradation and to better support audio 
streaming. Specifically, our scheme adaptively sets the 
ARQ timeout value based on current channel 
measurements. We show through testbed experiments that 
the adaptive ARQ improves the streaming quality 
significantly compared to the “vanilla” link layer of 
Bluetooth, especially in noisy environments. Our 
proposed approach is simple to implement and can 
actually be extended to the link layer of any wireless 
technology. 
Keywords—Audio Streaming; Bluetooth; Adaptive ARQ; 
BER 

 
1. Introduction 

 
The last few years have seen an impressive growth in 

multimedia content on the Internet. One striking success 
in this area has been MP3 audio, which has led to the 
development of MP3 players, such as the iPod [1]. 
Another orthogonal area of growth has been wireless, both 
in wide area technologies such as 2.5G/3G and local area 
technologies such as 802.11b and Bluetooth. One 
interesting usage scenario of Bluetooth is the PAN 
(Personal Area Network), i.e. a network of personal 
devices such as laptop, PDA, camera, MP3 player etc. that 
a person carries with her. 

A number of interesting usage scenarios arise when 
audio streaming (MP3) content is combined with wireless 
technologies, such as Bluetooth. For instance, a 
Bluetooth-enabled MP3 player can stream MP3 audio to a 
Bluetooth-enabled headset, allowing the user to be 
“locally” mobile while listening to songs. In another 
scenario, MP3 content could also be streamed through a 
2.5/3G cellphone to a Bluetooth headset. Another scenario 

could be an MP3 player downloading songs from a LAN 
access point, and playing them real-time. 

These and several other wireless streaming 
applications are envisioned. However, the varying nature 
of the wireless link can make audio streaming over 
wireless a challenging problem. In fact, a number of 
sources operate in the same ISM frequency band and thus 
can interfere today with Bluetooth and 802.11 (e.g.  
microwave ovens, cordless phones, etc).  

Good quality audio streaming requires that audio 
packets reach the client at a consistent rate within regular 
delays, even though audio (e.g. MP3) is not typically very 
high-bandwidth in nature. Clearly, a bad channel can 
cause packets to be dropped/delayed, adversely affecting 
the quality of streamed audio.  

A well-designed link layer can go a long way in 
solving some of these problems. Most wireless link layers 
of today employ some kind of ARQ mechanism to protect 
packets from a bad channel. While this can be greatly 
beneficial to non-real-time TCP traffic, it needs to be 
judiciously used when real-time/streaming traffic is being 
transferred. For example, if the ARQ retransmission limit 
is too high, packets can get severely delayed under bad 
channel conditions. On the other hand, a very low value of 
the ARQ limit can cause a large percentage of packets to 
be dropped at the link layer. Either of these situations will 
reduce the quality of streaming traffic. It is thus important 
that the ARQ retransmission limit be chosen in the correct 
range. 

In this paper, we investigate adaptive settings for the 
ARQ retransmission limit based on channel conditions. 
We show that an adaptive selection of the retransmission 
limit by far outperforms a fixed limit. We propose a 
simple algorithm to calculate the retransmission limit 
based on the transmission history of previous packets. 
Finally, we implement this algorithm in a Linux Bluetooth 
testbed and show that it improves performance of audio 
streaming under a wide range of channel conditions. 
While our solution was developed for Bluetooth, it can be 
easily applied to other wireless ARQ link layers.  

The rest of the paper is organized as follow: Section 2 
describes the Bluetooth technology. Section 3 discusses 
related work. Section 4 and 5 present our approach and 
the details of its implementation. Section 6 reports our 
testbed and Section 7 concludes the work. 
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2. Bluetooth Overview 
 

Bluetooth [2] is a short-range radio technology 
operating in the unlicensed 2.4GHz ISM (Industrial-
Scientific-Medical) frequency band. Its original goal was 
to replace the numerous proprietary cables to provide a 
universal interface for devices to communicate with each 
other. But it soon became a good solution to interconnect 
devices to form so-called personal area networks [3], 
primarily due to the low cost, low power and small size of 
Bluetooth chips. 

Bluetooth employs FHSS (Frequency Hopping Spread 
Spectrum) to avoid interference. There are 79 hopping 
frequencies (23 in some countries), each having a 
bandwidth of 1MHz. Frequency hopping is combined with 
stop and wait ARQ (Automatic Repeat Request), CRC 
(Cyclic Redundancy Check), and FEC (Forward Error 
Correction) to achieve high reliability on the wireless 
links. 

For real-time data such as voice, Synchronous 
Connection Oriented (SCO) links are used, while for data 
transmission, Asynchronous Connectionless Link (ACL) 
links are used. There are several ACL packet types, 
differing in packet length and whether they are FEC coded 
or not. Table 1 shows the different ACL packet types and 
their properties. 

 
Packet  

Mode FEC Size 
(bytes) 

Length 
(slots) 

Symmetric 
Throughput 

(kbps) 

Asymmetric 
Throughput 

(kbps) 
DM1 yes 17  1 108.8  108.8 108.8 
DM3 yes 121  3 258.1  387.2 54.4  
DM5 yes 227  5 286.7  477.8 36.3  
DH1 no 27  1 172.8  172.8 172.8 
DH3 no 183  3 390.4  585.6 86.4  
DH5 no 339  5 433.9  723.2 57.6  
Table 1: Different Bluetooth ACL connection modes 

 
Due to operating in the unlicensed 2.4GHz band, 

Bluetooth can be subject to interference from other 
wireless technologies, such as 802.11b, HomeRF, cordless 
phones and other sources such as microwave ovens. As 
various studies [4] [5] [6] have shown, these sources can 
severely degrade Bluetooth performance. 

 
3. Audio Streaming 
 

In this section, we first describe some related work in 
the area of audio streaming, and then discuss the issues 
related to streaming audio over wireless. 
 
3.1. Related Work 

Streaming audio (aka MP3 files) has become very 
popular on the Internet, and improving streaming quality 

has been a topic of active research. While receiving 
streaming multimedia, users expect smooth and 
uninterrupted quality and real-time effect, which has very 
different requirements than best-effort applications, such 
as FTP and HTTP. However, real-time data is very 
sensitive to network conditions, and any delays or packet 
losses generated by the network can degrade the stream 
quality. Much of the work in this area has looked at 
improving streaming over wired networks. For example, 
[7][8][9] propose that the sender should dynamically 
adjust its sending rate by considering the media encoding, 
the frame rate, and the priority of media parts. [10] allows 
the receiver to select the most appropriate stream when 
the connection is setup. Moreover, recent research has 
focused on utilizing the available bandwidth and making 
the stream friendlier with other TCP flows. For example, 
TFRC (TCP-Friendly Rate Control) [11] deploys an end-
to-end, TCP equation-based approach to enhance 
streaming quality. VTP (Video Transport Protocol) [12] 
estimates the “Eligible Rate” and adapts its sending rate 
according to the estimation.  

However, all the above works have an implicit 
assumption that packet losses and delays are due to 
network congestion, and the delay time of packet 
retransmissions in the link layer of nodes is negligible. 
Such an assumption is valid for wired connections, but not 
for wireless links, where the bit error rate is much higher 
than in wired links. While operating over wireless links, 
the retransmissions on the link layer can introduce a delay 
in each packet. Such a delay can limit the applicability of 
end-to-end approaches, since feedback to the source may 
be very slow.  

In order to overcome the problem, S. Krishnamachari 
et al proposed a cross-layer approach [13] to adaptively 
change the maximum number of MAC layer 
retransmissions and FEC encoding level in the application 
layer by using the estimated MAC layer link quality 
(SNR). However, the link quality estimation is based on 
the average of previous link qualities. In our experiments, 
we have found that it is really difficult to get accurate 
estimation, due to the unpredictable nature of wireless 
links  
 
3.2. Audio Streaming over Wireless 

Most wireless technologies perform some kind of ARQ 
(Automatic Retransmission Request) to ensure the 
integrity of the link layer. But, as the link quality becomes 
worse, multiple retransmissions become more and more 
frequent. Setting a high retransmission ARQ limit can lead 
to extremely large delays in audio packets, thus degrading 
the audio quality. Though most audio clients use a playout 
buffer to alleviate such problems, this does not solve the 
problem when the link quality is very bad for a sustained 
period of time. A low retransmission limit, on the other 
hand, can lead to a high percentage of packets being 
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dropped at the link layer, which also leads to poor audio 
quality.  

 Thus, in order to maintain good quality of streaming, 
not only should the packet loss rate be kept small, but the 
delays of packets should also not be allowed to increase 
too much. We present our link layer solution to this 
problem in the next section. 
 
4. Adaptive ARQ RTO Approach 
 

In this section, we present our proposed approach, 
Adaptive ARQ RTO (retransmission timeout), and 
compares it to other approaches. 

Bluetooth uses a stop-and-wait ARQ at the link layer 
and retransmits a packet until either the acknowledgement 
of a successful reception is received or the retransmission 
timeout is exceeded, at which point the packet is dropped. 
However, in most current Bluetooth chipsets, the default 
value of the retransmission timeout (RTO) is infinite. An 
infinite timeout value makes the link layer reliable, since 
packets are not dropped even when the channel conditions 
are very bad. However, this can lead to problems for real-
time/streaming media, since packets may be severely 
delayed when link quality is poor. 

A simple approach could be to use a fixed, finite RTO 
value. This will result in packets being dropped at the link 
layer, whenever the retransmission limit is exceeded. 
Since a severely delayed packet may be completely 
useless at the client, dropping such a packet may be a 
good idea anyway since subsequent packets have a higher 
chance of being transmitted. Thus, this approach may 
improve audio quality if the retransmission timeout (RTO) 
can be selected judiciously.  Therein lies the problem of 
using a “fixed, finite RTO” since it may not be easy to 
find a timeout value suitable for all the cases, such as 
different link qualities.  

Moreover, if such a setting is not appropriate, it may 
again degrade the audio quality. For example, if the fixed 
timeout value is too small, it will increase the drop rate; if 
the value is too large, it will lead to the same situation as 
the infinite RTO setting.  

To overcome such problems, we propose an adaptive 
ARQ RTO approach that adapts the value of the link layer 
RTO based on the measured properties of previous 
packets. Thus, if the link layer has spent too much time on 
the previous few packets, it should decrease the RTO 
setting for the next packet, since the audio client has 
already experienced much delay from the previous 
packets. In other words, it is better to risk to drop the next 
packet (due to the decrease in RTO) than to incur another 
increase in delay. On the other hand, if the link layer has 
sent the previous packets very efficiently with short RTTs, 
it should increase the RTO value since the client has 
already saved time on previous packets and is capable of 

tolerating some delay for the next one. Thus, it pays to put 
some extra effort to reduce packet loss (by increasing 
RTO).  

Namely, the link layer measures the RTT (round trip 
time) of each audio packet, say RTP [14] packet, which is 
the time for the whole RTP packet to get transmitted by 
the link layer (this implies the use of an application-aware 
link layer, as we discuss later). Using the value of the 
RTT, a smoothed RTT, SRTT, is calculated (Eq. 1), from 
which the RTO is calculated. The SRTT and RTO update 
equations are: 

RTTSRTTSRTT ×+×−= γγ )1('   (1) 
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 where we take 9.0  and ,  1.1  ,  25.0 === βαγ . Note 
that the RTO is dynamically updated using a 
multiplicative increase/decrease scheme following the 
threshold check. RTO increases when RTT decreases and 
vice versa. This is very different from TCP, where the 
RTO is increased proportionally to RTT. 

In addition, we also apply upper and lower bounds to 
the RTO value. The lower bound RTOmin is taken as 2 
times Tpacket, which is the time interval between two RTP 
packets sent on the server side. Tpacket can be easily 
derived from the packet size of the RTP packet, and we 
will present the calculation in the next section. We found 
through our experiments that if the RTO value was set 
close to the Tpacket, too many packets were dropped at the 
link layer due to the RTO limit being exceeded. Thus, 2 
times the Tpacket proved to be a good lower bound. 

The upper bound RTO is proportional to the available 
buffer size, as shown in the following equation. 

)2%,75(max ××= ufferAvailableBMaxTRTO packet    (3) 
where AvailableBuffer is the system maximum input 

buffer size minus the used buffer size, divided by the RTP 
packet size. This equation takes into account the fact that 
if the RTO for an RTP packet is too large, it may cause 
new incoming RTP packets to be dropped from the input 
queue due to overflow. In fact, we found that for very 
large values of RTO, a number of packets were dropped 
because the buffer was full. Limiting the RTO to this 
upper bound prevented such packet drops. 

Note that, in Eq. 2, we do not update the RTO if the 
previous packet has been dropped due to timeout. 
However, because contiguous packet dropping is harmful 
to audio quality, we reset the RTO to RTOmax, using Eq. 3, 
if at least two of the last 5 packets have been dropped. 
 
Application-Aware Link Layer: 
 

In order to be able to measure the RTT for an RTP 
packet, the link layer needs to be application-aware, since 
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a vanilla link layer can only deal with Bluetooth baseband 
packets. The application-aware functionality required is 
that the Bluetooth stack should be able to identify an RTP 
packet. The details of how this functionality is 
implemented are explained in Section 5.1. 

It should be noted here that a non-application-aware 
link layer can result in reduced performance. For instance, 
if one fragment of an RTP packet is dropped (due to the 
RTO limit being exceeded), the non-application-aware 
link layer will still try to send the remaining fragments of 
the RTP packet, even though they are of no use since the 
receiving link layer will never be able to reassemble the 
RTP packet. This will result in wasted bandwidth. This is 
our motivation for adding application-awareness to our 
link layer. 
 
5. Implementation 
 

We implemented both the fixed RTO and the adaptive 
RTO method on our Bluetooth testbed. The testbed 
consists of two Linux based laptops, both equipped with a 
Bluetooth PCMCIA card. We installed Bluez [15], which 
is an open source Bluetooth Stack on the Linux operating 
system, on both laptops. We also used some other 802.11b 
devices to generate the interference to our Bluetooth 
connection during our experiments. We used DH5 packets 
in all our experiments. The system setup is shown in 
Figure 1. 

 
Figure 1: Bluetooth Testbed 

 
The streaming protocol used in our experiments is 

RTSP (Real-Time Streaming Protocol) [16], which is 
widely used on the Internet. RTSP is an application-level 
protocol to control the delivery of real-time multimedia 
data for both unicast and multicast. RTSP segments the 
MP3 stream into many small RTP packets at the server; 
the client can control the delivery (move backward, move 
forward, play, or stop) via the RTCP (RTP Control) 
protocol. Each RTP packet contains an RTP sequence 
number and may contain several MP3 packets. 

The audio stream used in our experiments is a 128kbps 
bit rate, 44.1 MHz frequency, Layer II MP3 file. The MP3 
packet size of this music is 417 bytes, and each RTP 
packet contains 3 MP3 packets plus the header 
information (16 bytes). Thus, the RTP packet size is 
417*3+16=1267 bytes, and the Tpacket, the time interval 

between two RTP packets sent on the server side, is 
1267*8/128000 ≈ 80 msec. Since we use DH5 packets 
which have a maximum payload size of 339 bytes, each 
RTP packet will need at least 4 DH5 packets to be 
transmitted; therefore, the minimum transmission time for 
each RTP packets is 0.625*(5+1)*4 ≈ 15msec, where 
0.625 msec is the Bluetooth slot time, (each DH5 packet 
consumes 5 time slot in one direction and 1 in the 
opposite direction). 
 
5.1. Implementation on Bluez 

Bluez is an open-source implementation of the 
Bluetooth stack on the Linux operating system. In the 
Bluetooth stack (shown in Figure 2), the HCI (Host 
Controller Interface) layer provides a command interface 
to communicate, access, and control the hardware layer. 
The L2CAP (Logical Link Control and Adaptation Layer 
Protocol) layer provides connection-oriented and 
connectionless data services to upper layer protocols with 
protocol multiplexing capability, segmentation and 
reassembly operation. The BNEP (Bluetooth Network 
Encapsulation Protocol) [17] layer lies on top of the 
L2CAP layer and provides support for IP. 

 

 
Figure 2: Bluetooth Stack 

 
To make the link layer application-aware, we extract 

header information in the BNEP layer from the received 
RTP packet. The BNEP layer passes the information 
downward the Bluetooth stack to the L2CAP layer and 
then the HCI layer. Each RTP packet is split into multiple 
fragments by the L2CAP layer. Once the fragments of the 
RTP packet arrive at the HCI layer, it queues all the 
fragments and stores the arrival time of the first fragment. 
The measured RTT (Round Trip Time) is the time for all 
the fragments of the RTP packet to be successfully 
transmitted. In case one fragment of the RTP packet is 
dropped due to the RTO being exceeded, the remaining 
fragments of the RTP packet are removed from the HCI 
layer and the baseband by using the HCI_Flush command 
(which is defined in the Bluetooth specs).  
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5.2. Generating Interference 
One challenge of our testbed setup was generating 

reliable interference. We found that it was very difficult to 
control the signal strength in the testbed since 
environmental factors make the link quality unpredictable. 
We used 802.11b devices to create interference for the 
Bluetooth connections, because both of them operate in 
the 2.4 GHz frequency band. Though increasing the 
physical distance between the two Bluetooth devices 
decreased the link quality, we found that it also increased 
the variance of the link quality and therefore makes 
conditions difficult to control. We were able to control the 
signal strength by keeping the two Bluetooth devices very 
close and controlling the traffic loads on interfering 
802.11b connections. 

To obtain the link quality from the Bluetooth chipset, 
we used the Get_Link_Quality function call. This call is 
defined in the Bluetooth spec [2] as the following manner: 

Get_Link_Quality: This command returns the value of 
the Link Quality. It returns a number between 0 and 
255, with the higher value representing a better channel. 
Each Bluetooth module vendor will determine how to 
measure the link quality. 

As an example, for Bluetooth cards containing CSR 
(Cambridge Silicon Radio [18]) chipsets, the Link Quality 
is calculated from the Bit Error Rate in the following 
manner: 

 
If BER (Bit Error Rate) = 0, LQ (Link Quality) = 255 

If BER <= 40/40000, LQ = 255 – BER * 40000 

If 40/40000<BER <= 4000/40000, LQ = 215 – ((BER / 32) * 40000) 

If 4000/40000<BER <= 40000/40000, LQ=105– ((BER / 256)* 40000) 

Figure 3 shows the relation of the measured link 
quality value versus bit error rate for the CSR chipset, and 
we will make use of such relation to monitor and calibrate 
the channel and correlate to the RTO dynamics in the 
following experiments. 
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Figure 3: Link Quality vs BER for CSR chipset 

6. Experiment Results 
 
In this section, we present experiment results showing 

the improvement in real-time audio quality when using the 

proposed approach. The testbed setup and implementation 
are described in section 5, and the experiments are 
repeated under different link quality conditions. In the 
following experiments, we use “Adapt” to stand for our 
adaptive scheme and “Fixed 160, 400, 1200” to stand for 
the fixed RTO method with timeout values 160, 400, and 
1200 msec respectively. It should be noted here that in the 
default Bluetooth implementation, the ARQ timeout is 
infinite, i.e., the link layer never drops a packet.   

Note that, because of the difficulty to control the link 
quality in the real experiments, the link quality 
distribution of each experiment is unique, even though the 
average BER might be the same. However, the average 
performance trend should be clearly observed. 

 
6.1. Adaptive RTO 
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Figure 4: RTO adaptation of the proposed approach 

In the first experiment, we show the RTO adaptation 
behavior of our proposed approach. In Fig. 4, the solid 
line represents the RTT, i.e., the time between the arrival 
of an RTP packet at the Bluetooth baseband layer and 
completion of its successful transmission, and the dashed 
line represents the adaptive RTO value. The ARQ timeout 
events are marked as circles in the figure. It can be seen 
that the adaptive RTO value increases as the RTT 
decreases and vice versa, in accordance with Eq. 2. 

 
6.2. RTP Packet Success Rate 
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Figure 5: RTP packet success rate  

Fig. 5 shows the RTP packet success rate on the 
receiver side, i.e. the percentage of packets successfully 
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transmitted. Different BERs were generated by varying 
the load on interfering 802.11 connections, as explained 
earlier. Our adaptive scheme outperforms the fixed ARQ 
timeout schemes, clearly showing the benefit of changing 
timeout based on channel conditions. The “fixed 160” 
actually outperforms the higher ARQ timeout cases. 
Though this result may look counter-intuitive since a 
higher ARQ timeout is expected to drop fewer packets 
due to ARQ timeout, in reality higher ARQ timeouts also 
lead to a larger number of packets being dropped due to 
input queue overflow. This is exactly the reason why 
“fixed 1200” shows the least RTP packet success rate. 
The vanilla Bluez link layer, which has an infinite ARQ 
timeout, performs similar to the “fixed 1200” timeout. 

 
6.3. RTP Packet Delay 
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Figure 6: RTP packet delay 
Figure 6 shows the RTP average packet delay at the 

audio client. While the packet success rate determines 
how much data is successfully transmitted, the average 
packet delay represents how smooth the quality is. 

From the figure, it is obvious that the adaptive 
approach is able to achieve smaller average delays. Even 
with a BER of 0.0045, the average delay is still close to 
the minimum value, which means acceptable audio 
quality. For the fixed RTO cases, the higher the ARQ 
RTO timeout, the higher is the average packet delay. This 
is obvious since a larger ARQ timeout value leads to a 
larger number of retransmissions. 

 
In balance, from the examination of the results in Fig 5 

and 6 one concludes that the adaptive packet scheme 
operate adequately with BER up to .004 (packet loss rate 
less than 10% and delay less than 50 ms).  The “vanilla” 
scheme, with infinite RTO will fall apart for BER < .002. 
This is a remarkable improvement in performance. 

 
7. Conclusion 

 
In this paper, we proposed and evaluated an adaptive 

ARQ timeout scheme at the Bluetooth link layer to 
improve the quality of streaming audio. We compared our 
results with the fixed ARQ timeout methods; the results 

show that our method improves both average delay and 
the packet loss rate of RTP packets, particularly when 
channel conditions are bad. Moreover, the proposed 
approach is simple and can be easily implemented in any 
link layer. Moreover, the approach is not specific to 
Bluetooth only, but can be applied to the link layer of 
other wireless technologies such as 802.11b. 
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