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Abstract

Streaming audio has become a popular form of media
on the Internet. As wireless personal area network
architectures (e.g. Bluetooth) are now targeted to support
multimedia traffic, streaming audio over these
technologies will give rise to interesting applications. But,
the variable nature of the wireless medium will not lend
itself easily to supporting audio streaming . In this paper
we focus on Bluetooth and propose, an enhancement to
the Bluetooth link layer ARQ mechanism to compensate
for channel degradation and to better support audio
streaming. Specifically, our scheme adaptively sets the
ARQ timeout value based on current channel
measurements. We show through testbed experiments that
the adaptive ARQ improves the streaming quality
significantly compared to the “vanilla” link layer of
Bluetooth, especially in noisy environments. Our
proposed approach is simple to implement and can
actually be extended to the link layer of any wireless
technology.
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1. Introduction

The last few years have seen an impressive growth in
multimedia content on the Internet. One striking success
in this area has been MP3 audio, which has led to the
development of MP3 players, such as the iPod [1].
Another orthogonal area of growth has been wireless, both
in wide area technologies such as 2.5G/3G and local area
technologies such as 802.11b and Bluetooth. One
interesting usage scenario of Bluetooth is the PAN
(Personal Area Network), i.e. a network of personal
devices such as laptop, PDA, camera, MP3 player etc. that
a person carries with her.

A number of interesting usage scenarios arise when
audio streaming (MP3) content is combined with wireless
technologies, such as Bluetooth. For instance, a
Bluetooth-enabled MP3 player can stream MP3 audio to a
Bluetooth-enabled headset, allowing the user to be
“locally” mobile while listening to songs. In another
scenario, MP3 content could also be streamed through a
2.5/3G cellphone to a Bluetooth headset. Another scenario

could be an MP3 player downloading songs from a LAN
access point, and playing them real-time.

These and several other wireless streaming
applications are envisioned. However, the varying nature
of the wireless link can make audio streaming over
wireless a challenging problem. In fact, a number of
sources operate in the same ISM frequency band and thus
can interfere today with Bluetooth and 802.11 (e.g.
microwave ovens, cordless phones, etc).

Good quality audio streaming requires that audio
packets reach the client at a consistent rate within regular
delays, even though audio (e.g. MP3) is not typically very
high-bandwidth in nature. Clearly, a bad channel can
cause packets to be dropped/delayed, adversely affecting
the quality of streamed audio.

A well-designed link layer can go a long way in
solving some of these problems. Most wireless link layers
of today employ some kind of ARQ mechanism to protect
packets from a bad channel. While this can be greatly
beneficial to non-real-time TCP traffic, it needs to be
judiciously used when real-time/streaming traffic is being
transferred. For example, if the ARQ retransmission limit
is too high, packets can get severely delayed under bad
channel conditions. On the other hand, a very low value of
the ARQ limit can cause a large percentage of packets to
be dropped at the link layer. Either of these situations will
reduce the quality of streaming traffic. It is thus important
that the ARQ retransmission limit be chosen in the correct
range.

In this paper, we investigate adaptive settings for the
ARQ retransmission limit based on channel conditions.
We show that an adaptive selection of the retransmission
limit by far outperforms a fixed limit. We propose a
simple algorithm to calculate the retransmission limit
based on the transmission history of previous packets.
Finally, we implement this algorithm in a Linux Bluetooth
testbed and show that it improves performance of audio
streaming under a wide range of channel conditions.
While our solution was developed for Bluetooth, it can be
easily applied to other wireless ARQ link layers.

The rest of the paper is organized as follow: Section 2
describes the Bluetooth technology. Section 3 discusses
related work. Section 4 and 5 present our approach and
the details of its implementation. Section 6 reports our
testbed and Section 7 concludes the work.



2. Bluetooth Overview

Bluetooth [2] is a short-range radio technology
operating in the unlicensed 2.4GHz ISM (Industrial-
Scientific-Medical) frequency band. Its original goal was
to replace the numerous proprietary cables to provide a
universal interface for devices to communicate with each
other. But it soon became a good solution to interconnect
devices to form so-called personal area networks [3],
primarily due to the low cost, low power and small size of
Bluetooth chips.

Bluetooth employs FHSS (Frequency Hopping Spread
Spectrum) to avoid interference. There are 79 hopping
frequencies (23 in some countries), each having a
bandwidth of IMHz. Frequency hopping is combined with
stop and wait ARQ (Automatic Repeat Request), CRC
(Cyclic Redundancy Check), and FEC (Forward Error
Correction) to achieve high reliability on the wireless
links.

For real-time data such as voice, Synchronous
Connection Oriented (SCO) links are used, while for data
transmission, Asynchronous Connectionless Link (ACL)
links are used. There are several ACL packet types,
differing in packet length and whether they are FEC coded
or not. Table 1 shows the different ACL packet types and
their properties.

Packet Symmetric | Asymmetric

Mode|FEC| Size |Length|Throughput| Throughput
(bytes)| (slots) |  (kbps) (kbps)

DM1 |yes| 17 1 108.8 108.8 | 108.8
DM3 |yes | 121 3 258.1 387.2 | 544
DMS | yes | 227 5 286.7 477.8 | 363
DHI1 | no | 27 1 172.8 172.8 | 172.8
DH3 | no | 183 3 390.4 585.6 | 86.4
DHS5 | no | 339 5 433.9 7232 | 57.6

Table 1: Different Bluetooth ACL connection modes

Due to operating in the unlicensed 2.4GHz band,
Bluetooth can be subject to interference from other
wireless technologies, such as 802.11b, HomeRF, cordless
phones and other sources such as microwave ovens. As
various studies [4] [5] [6] have shown, these sources can
severely degrade Bluetooth performance.

3. Audio Streaming

In this section, we first describe some related work in
the area of audio streaming, and then discuss the issues
related to streaming audio over wireless.

3.1. Related Work
Streaming audio (aka MP3 files) has become very
popular on the Internet, and improving streaming quality

has been a topic of active research. While receiving
streaming multimedia, users expect smooth and
uninterrupted quality and real-time effect, which has very
different requirements than best-effort applications, such
as FTP and HTTP. However, real-time data is very
sensitive to network conditions, and any delays or packet
losses generated by the network can degrade the stream
quality. Much of the work in this area has looked at
improving streaming over wired networks. For example,
[71[8]1[9] propose that the sender should dynamically
adjust its sending rate by considering the media encoding,
the frame rate, and the priority of media parts. [10] allows
the receiver to select the most appropriate stream when
the connection is setup. Moreover, recent research has
focused on utilizing the available bandwidth and making
the stream friendlier with other TCP flows. For example,
TFRC (TCP-Friendly Rate Control) [11] deploys an end-
to-end, TCP equation-based approach to enhance
streaming quality. VTP (Video Transport Protocol) [12]
estimates the “Eligible Rate” and adapts its sending rate
according to the estimation.

However, all the above works have an implicit
assumption that packet losses and delays are due to
network congestion, and the delay time of packet
retransmissions in the link layer of nodes is negligible.
Such an assumption is valid for wired connections, but not
for wireless links, where the bit error rate is much higher
than in wired links. While operating over wireless links,
the retransmissions on the link layer can introduce a delay
in each packet. Such a delay can limit the applicability of
end-to-end approaches, since feedback to the source may
be very slow.

In order to overcome the problem, S. Krishnamachari
et al proposed a cross-layer approach [13] to adaptively
change the maximum number of MAC layer
retransmissions and FEC encoding level in the application
layer by using the estimated MAC layer link quality
(SNR). However, the link quality estimation is based on
the average of previous link qualities. In our experiments,
we have found that it is really difficult to get accurate
estimation, due to the unpredictable nature of wireless
links

3.2. Audio Streaming over Wireless

Most wireless technologies perform some kind of ARQ
(Automatic Retransmission Request) to ensure the
integrity of the link layer. But, as the link quality becomes
worse, multiple retransmissions become more and more
frequent. Setting a high retransmission ARQ limit can lead
to extremely large delays in audio packets, thus degrading
the audio quality. Though most audio clients use a playout
buffer to alleviate such problems, this does not solve the
problem when the link quality is very bad for a sustained
period of time. A low retransmission limit, on the other
hand, can lead to a high percentage of packets being



dropped at the link layer, which also leads to poor audio
quality.

Thus, in order to maintain good quality of streaming,
not only should the packet loss rate be kept small, but the
delays of packets should also not be allowed to increase
too much. We present our link layer solution to this
problem in the next section.

4. Adaptive ARQ RTO Approach

In this section, we present our proposed approach,
Adaptive ARQ RTO (retransmission timeout), and
compares it to other approaches.

Bluetooth uses a stop-and-wait ARQ at the link layer
and retransmits a packet until either the acknowledgement
of a successful reception is received or the retransmission
timeout is exceeded, at which point the packet is dropped.
However, in most current Bluetooth chipsets, the default
value of the retransmission timeout (RTO) is infinite. An
infinite timeout value makes the link layer reliable, since
packets are not dropped even when the channel conditions
are very bad. However, this can lead to problems for real-
time/streaming media, since packets may be severely
delayed when link quality is poor.

A simple approach could be to use a fixed, finite RTO
value. This will result in packets being dropped at the link
layer, whenever the retransmission limit is exceeded.
Since a severely delayed packet may be completely
useless at the client, dropping such a packet may be a
good idea anyway since subsequent packets have a higher
chance of being transmitted. Thus, this approach may
improve audio quality if the retransmission timeout (RTO)
can be selected judiciously. Therein lies the problem of
using a “fixed, finite RTO” since it may not be easy to
find a timeout value suitable for all the cases, such as
different link qualities.

Moreover, if such a setting is not appropriate, it may
again degrade the audio quality. For example, if the fixed
timeout value is too small, it will increase the drop rate; if
the value is too large, it will lead to the same situation as
the infinite RTO setting.

To overcome such problems, we propose an adaptive
ARQ RTO approach that adapts the value of the link layer
RTO based on the measured properties of previous
packets. Thus, if the link layer has spent too much time on
the previous few packets, it should decrease the RTO
setting for the next packet, since the audio client has
already experienced much delay from the previous
packets. In other words, it is better to risk to drop the next
packet (due to the decrease in RTO) than to incur another
increase in delay. On the other hand, if the link layer has
sent the previous packets very efficiently with short RTTs,
it should increase the RTO value since the client has
already saved time on previous packets and is capable of

tolerating some delay for the next one. Thus, it pays to put
some extra effort to reduce packet loss (by increasing
RTO).

Namely, the link layer measures the RTT (round trip
time) of each audio packet, say RTP [14] packet, which is
the time for the whole RTP packet to get transmitted by
the link layer (this implies the use of an application-aware
link layer, as we discuss later). Using the value of the
RTT, a smoothed RTT, SRTT, is calculated (Eq. 1), from
which the RTO is calculated. The SRTT and RTO update
equations are:

SRTT'=(1-y)xSRTT +yxRTT (1)
@ xRTO;if RTT < SRTT
RTO'={ BxRTO;if RTT > SRTT @)

RTO; if previous packet is dropped

where we take y=0.25, a=1.1 ,and $#=0.9. Note

that the RTO is dynamically updated using a
multiplicative increase/decrease scheme following the
threshold check. RTO increases when RTT decreases and
vice versa. This is very different from TCP, where the
RTO is increased proportionally to RTT.

In addition, we also apply upper and lower bounds to
the RTO value. The lower bound RTO,,, is taken as 2
times Tpacket, Which is the time interval between two RTP
packets sent on the server side. Tpauet can be easily
derived from the packet size of the RTP packet, and we
will present the calculation in the next section. We found
through our experiments that if the RTO value was set
close to the Tpacket, too many packets were dropped at the
link layer due to the RTO limit being exceeded. Thus, 2
times the Tpacer proved to be a good lower bound.

The upper bound RTO is proportional to the available
buffer size, as shown in the following equation.

RTO, .. =T .. X Max(AvailableBuffer x 75%,2) (3)

where AvailableBuffer is the system maximum input
buffer size minus the used buffer size, divided by the RTP
packet size. This equation takes into account the fact that
if the RTO for an RTP packet is too large, it may cause
new incoming RTP packets to be dropped from the input
queue due to overflow. In fact, we found that for very
large values of RTO, a number of packets were dropped
because the buffer was full. Limiting the RTO to this
upper bound prevented such packet drops.

Note that, in Eq. 2, we do not update the RTO if the
previous packet has been dropped due to timeout.
However, because contiguous packet dropping is harmful
to audio quality, we reset the RTO to RTOpyy, using Eq. 3,
if at least two of the last 5 packets have been dropped.

packet

Application-Aware Link Layer:

In order to be able to measure the RTT for an RTP
packet, the link layer needs to be application-aware, since



a vanilla link layer can only deal with Bluetooth baseband
packets. The application-aware functionality required is
that the Bluetooth stack should be able to identify an RTP
packet. The details of how this functionality is
implemented are explained in Section 5.1.

It should be noted here that a non-application-aware
link layer can result in reduced performance. For instance,
if one fragment of an RTP packet is dropped (due to the
RTO limit being exceeded), the non-application-aware
link layer will still try to send the remaining fragments of
the RTP packet, even though they are of no use since the
receiving link layer will never be able to reassemble the
RTP packet. This will result in wasted bandwidth. This is
our motivation for adding application-awareness to our
link layer.

5. Implementation

We implemented both the fixed RTO and the adaptive
RTO method on our Bluetooth testbed. The testbed
consists of two Linux based laptops, both equipped with a
Bluetooth PCMCIA card. We installed Bluez [15], which
is an open source Bluetooth Stack on the Linux operating
system, on both laptops. We also used some other 802.11b
devices to generate the interference to our Bluetooth
connection during our experiments. We used DH5 packets
in all our experiments. The system setup is shown in

Figure 1.
< Ny ﬁ//y/ Audio Server
Audio Client 802.11b

Figure 1: Bluetooth Testbed

The streaming protocol used in our experiments is
RTSP (Real-Time Streaming Protocol) [16], which is
widely used on the Internet. RTSP is an application-level
protocol to control the delivery of real-time multimedia
data for both unicast and multicast. RTSP segments the
MP3 stream into many small RTP packets at the server;
the client can control the delivery (move backward, move
forward, play, or stop) via the RTCP (RTP Control)
protocol. Each RTP packet contains an RTP sequence
number and may contain several MP3 packets.

The audio stream used in our experiments is a 128kbps
bit rate, 44.1 MHz frequency, Layer 11 MP3 file. The MP3
packet size of this music is 417 bytes, and each RTP
packet contains 3 MP3 packets plus the header
information (16 bytes). Thus, the RTP packet size is
417*3+16=1267 bytes, and the Tpacer, the time interval

between two RTP packets sent on the server side, is
1267*8/128000 ~ 80 msec. Since we use DHS5 packets
which have a maximum payload size of 339 bytes, each
RTP packet will need at least 4 DHS packets to be
transmitted; therefore, the minimum transmission time for
each RTP packets is 0.625*(5+1)*4 = 15msec, where
0.625 msec is the Bluetooth slot time, (each DHS packet
consumes 5 time slot in one direction and 1 in the
opposite direction).

5.1. Implementation on Bluez

Bluez is an open-source implementation of the
Bluetooth stack on the Linux operating system. In the
Bluetooth stack (shown in Figure 2), the HCI (Host
Controller Interface) layer provides a command interface
to communicate, access, and control the hardware layer.
The L2CAP (Logical Link Control and Adaptation Layer
Protocol) layer provides connection-oriented and
connectionless data services to upper layer protocols with
protocol multiplexing capability, segmentation and
reassembly operation. The BNEP (Bluetooth Network
Encapsulation Protocol) [17] layer lies on top of the
L2CAP layer and provides support for IP.

Applications

TCP/UDP

P

‘ L2CAP

| Hecl |
‘ Bluetooth Baseband ‘
[

T
‘ Bluetooth Radio ‘

Figure 2: Bluetooth Stack

To make the link layer application-aware, we extract
header information in the BNEP layer from the received
RTP packet. The BNEP layer passes the information
downward the Bluetooth stack to the L2CAP layer and
then the HCI layer. Each RTP packet is split into multiple
fragments by the L2CAP layer. Once the fragments of the
RTP packet arrive at the HCI layer, it queues all the
fragments and stores the arrival time of the first fragment.
The measured RTT (Round Trip Time) is the time for all
the fragments of the RTP packet to be successfully
transmitted. In case one fragment of the RTP packet is
dropped due to the RTO being exceeded, the remaining
fragments of the RTP packet are removed from the HCI
layer and the baseband by using the HCI_Flush command
(which is defined in the Bluetooth specs).



5.2. Generating Interference

One challenge of our testbed setup was generating
reliable interference. We found that it was very difficult to
control the signal strength in the testbed since
environmental factors make the link quality unpredictable.
We used 802.11b devices to create interference for the
Bluetooth connections, because both of them operate in
the 2.4 GHz frequency band. Though increasing the
physical distance between the two Bluetooth devices
decreased the link quality, we found that it also increased
the variance of the link quality and therefore makes
conditions difficult to control. We were able to control the
signal strength by keeping the two Bluetooth devices very
close and controlling the traffic loads on interfering
802.11b connections.

To obtain the link quality from the Bluetooth chipset,
we used the Get_Link_Quality function call. This call is
defined in the Bluetooth spec [2] as the following manner:

Get_Link_Quality: This command returns the value of

the Link Quality. It returns a number between 0 and

255, with the higher value representing a better channel.

Each Bluetooth module vendor will determine how to

measure the link quality.

As an example, for Bluetooth cards containing CSR
(Cambridge Silicon Radio [18]) chipsets, the Link Quality
is calculated from the Bit Error Rate in the following
manner:

If BER (Bit Error Rate) = 0, LQ (Link Quality) = 255

If BER <= 40/40000, LQ = 255 — BER * 40000

If 40/40000<BER <= 4000/40000, LQ = 215 — ((BER / 32) * 40000)

If 4000/40000<BER <= 40000/40000, LQ=105- ((BER / 256)* 40000)

Figure 3 shows the relation of the measured link
quality value versus bit error rate for the CSR chipset, and
we will make use of such relation to monitor and calibrate
the channel and correlate to the RTO dynamics in the
following experiments.
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Figure 3: Link Quality vs BER for CSR chipset
6. Experiment Results

In this section, we present experiment results showing
the improvement in real-time audio quality when using the

proposed approach. The testbed setup and implementation
are described in section 5, and the experiments are
repeated under different link quality conditions. In the
following experiments, we use “Adapt” to stand for our
adaptive scheme and “Fixed 160, 400, 1200” to stand for
the fixed RTO method with timeout values 160, 400, and
1200 msec respectively. It should be noted here that in the
default Bluetooth implementation, the ARQ timeout is
infinite, i.e., the link layer never drops a packet.

Note that, because of the difficulty to control the link
quality in the real experiments, the link quality
distribution of each experiment is unique, even though the
average BER might be the same. However, the average
performance trend should be clearly observed.

6.1. Adaptive RTO
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Figure 4: RTO adaptation of the proposed approach

In the first experiment, we show the RTO adaptation
behavior of our proposed approach. In Fig. 4, the solid
line represents the RTT, i.e., the time between the arrival
of an RTP packet at the Bluetooth baseband layer and
completion of its successful transmission, and the dashed
line represents the adaptive RTO value. The ARQ timeout
events are marked as circles in the figure. It can be seen
that the adaptive RTO value increases as the RTT
decreases and vice versa, in accordance with Eq. 2.

6.2. RTP Packet Success Rate
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Figure 5: RTP packet success rate

Fig. 5 shows the RTP packet success rate on the
receiver side, i.e. the percentage of packets successfully



transmitted. Different BERs were generated by varying
the load on interfering 802.11 connections, as explained
earlier. Our adaptive scheme outperforms the fixed ARQ
timeout schemes, clearly showing the benefit of changing

timeout based on channel conditions.

The “fixed 1607

actually outperforms the higher ARQ timeout cases.
Though this result may look counter-intuitive since a
higher ARQ timeout is expected to drop fewer packets
due to ARQ timeout, in reality higher ARQ timeouts also
lead to a larger number of packets being dropped due to

input queue overflow. This is exactly the reason why

“fixed 1200” shows the least RTP packet success rate.
The vanilla Bluez link layer, which has an infinite ARQ
timeout, performs similar to the “fixed 1200 timeout.

6.3. RTP Packet Delay

400 f

ela PR
s — -
;,7350' Fixe elal -
E o
g300- -
F 250 f id -7
oy -
2 200 B . 1
) e - -
2’150 7 - o — ]
o P
100 T

0 0.0005 0.001 0.0015 0.002 0.0025 0.003 0.0035 0.004 0.004%

Bit Error Rate

Figure 6: RTP packet delay

Figure 6 shows the RTP average packet delay at the
audio client. While the packet success rate determines
how much data is successfully transmitted, the average
packet delay represents how smooth the quality is.

From the figure,
approach is able to achieve smaller average delays. Even
with a BER of 0.0045, the average delay is still close to
the minimum value, which means acceptable audio
quality. For the fixed RTO cases, the higher the ARQ
RTO timeout, the higher is the average packet delay. This
is obvious since a larger ARQ timeout value leads to a
larger number of retransmissions.

it is obvious that the adaptive

In balance, from the examination of the results in Fig 5
and 6 one concludes that the adaptive packet scheme
operate adequately with BER up to .004 (packet loss rate
less than 10% and delay less than 50 ms). The “vanilla”
scheme, with infinite RTO will fall apart for BER < .002.
This is a remarkable improvement in performance.

7. Conclusion

In this paper, we proposed and evaluated an adaptive
ARQ timeout scheme at the Bluetooth link layer to
improve the quality of streaming audio. We compared our
results with the fixed ARQ timeout methods; the results

show that our method improves both average delay and
the packet loss rate of RTP packets, particularly when
channel conditions are bad. Moreover, the proposed
approach is simple and can be easily implemented in any
link layer. Moreover, the approach is not specific to
Bluetooth only, but can be applied to the link layer of
other wireless technologies such as 802.11b.
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