
Analysis of TCP Performance over Mobile Ad Hoc Networks*

Gavin Holland and Nitin Vaidya

Department of Computer Science
Texas A&M University, College Station, TX 77843-3112

{gholland,vaidya}@cs.tamu.edu

Abstract

Mobile ad hoc networks have gained a lot of attention
lately as a means of providing continuous network
connectivity to mobile computing devices regardless
of physical location. Recently, a large amount of re-
search has focused on the routing protocols needed
in such an environment. In this paper, we investi-
gate the effects that link breakage due to mobility
has on TCP performance. Through simulation, we
show that TCP throughput drops significantly when
nodes move, due to TCP’s inability to recognize the
difference between link failure and congestion. We
also analyze specific examples, such as a situation
where throughput is zero for a particular connec-
tion. We introduce a new metric, expected throughput,
for the comparison of throughput in multi-hop net- - -
works, and then use this metric to show how the use
of explicit link failure notification (ELFN) techniques
can significantly improve TCP performance.

1 Introduction

With the proliferation of mobile computing devices, the
demand for continuous network connectivity regardless
of physical location has spurred interest in the use of
mobile ad hoc networks. A mobile ad hoc network
is a network in which a group of mobile computing
devices communicate among themselves using wireless
radios, without the aid of a fixed networking infras-
tructure. Their use is being proposed as an exten-
sion to the Internet, but they can be used anywhere
that a fixed infrastructure does not exist, or is not de-
sirable. A lot of research of mobile ad hoc networks
has focused on the development of routing protocols
(e.g. [19, 10, 11, 16, 18, 20, 21, 22, 231.

‘This work was supported in part by the Department of Ed-
ucation under Award No. P200A80305, the National Science
Foundation under Grant No. CDA-9529442, and the Texas Ad-
vanced Technology Program under Grant No. 010115-248.

Permission lo make digital or hard copies of all or part of this work for
personal or classroom USC is granted without fee provided that copies
are not made or distributed for protit or commercial advantage and that
copies bear this notice and the full citation on the tirst page. To copy
otherwise, to republish, to post on servers or to redistribute to lists.
requires prior spccitic permission and/or a fee.
Mobicom ‘99 Seattle Washington USA
Copyright ACM 1999 l-581 13-142-9/99/08...$5.00

Our research is focused on the performance of TCP
over mobile ad hoc networks.

Since TCP/IP is the standard network protocol stack
on the Internet, its use over mobile ad hoc networks is
a certainty. Not only does it leverage a large number of
applications, but its use also allows seamless integration
with the Internet, where available.

However, earlier research on cellular wireless sys-
tems showed that TCP suffers poor performance in wire-
less networks because of packet losses and corruption
caused by wireless induced errors. Thus, a lot of re-
search has since focused on mechanisms to improve TCP
performance in cellular wireless systems (e.g. [2, 31).
Further studies have addressed other network problems
that negatively affect TCP performance, such as band-
width asymmetry and large round-trip times, which are
prevalent in satellite networks (e.g. [12, 41).

In this paper, we address another network character-
istic that impacts TCP performance, which is common
in mobile ad hoc networks: link failures due to mobil-
ity. We first present a performance analysis of standard
TCP over mobile ad hoc networks, and then present an
analysis of the use of explicit notification techniques to
counter the affects of link failures.

2 Simulation Environment and Methodology

The results in this paper are based on simulations using
the ns network simulator from Lawrence Berkeley Na-
tional Laboratory (LBNL) [13], with extensions from
the MONARCH project at Carnegie Mellon [5]. The
extensions include a set of mobile ad hoc network rout-
ing protocols and an implementation of BSD’s ARP
protocol, as well as an 802.11 MAC layer and a radio
propagation model. Also included are mechanisms to
model node mobility using pre-computed mobility pat-
terns that are fed to the simulation at run-time. For
more information about the extensions, we refer the
reader to [5]. Unless otherwise noted, no modifications
were made to the simulator described in [5], beyond mi-
nor bug fixes that were necessary to complete the study.

All results are based on a network configuration con-
sisting of TCP-Reno over IP on an 802.11 wireless net-
work, with routing provided by the Dynamic Source

219

Routing (DSR) protocol and BSD’s ARP protocol (used
to resolve IP addresses to MAC addresses).

The choice of DSR as the routing protocol was based
on the availability of the ns extensions at the time when
this study was initiated. Our goal was only to’ observe
TCP’s performance in the presence of mobility induced
failures in a plausible network environment, for which
any of the proposed mobile wireless ad hoc routing pro-
tocols would have sufficed. However, since we frequently
refer to the routing protocol in this paper, the next para-
graph is a brief primer on DSR to familiarize the reader
with its terminology and characteristics.

The Dynamic Source Routing (DSR) protocol was
developed by researchers at CMU for use in mobile ad
hoc networks [6]. In DSR, each packet injected into
the network contains a routing header that specifies the
complete sequence of nodes on which the packet should
be forwarded. This route is obtained through route dis-
covery. When a node has a packet to send for which
it does not have a route, it initiates route discovery
by broadcasting a route request. This request is propa-
gated through the network until it reaches a node, say
z, that knows of a route to the destination. Node G then
sends a route reply to the requester with the new route
formed from the route at node z concatenated with the
source route in the request. To limit how far a request
is propagated, a time-to-live (TTL) field is attached to
every request along with a unique request identifier. A
node that receives a route request that it has seen be-
fore, or that has lived beyond its time-to-live, drops
the request. To reduce the number of route discover-
ies, each node maintains a cache of routes that it has
learned. A node may learn of a route through route dis-
covery, or through other means such as snooping routes
in route replies and data packets, or eavesdropping on
local broadcasts. This cache is updated through route
error messages. Route error messages are sent by a
node when it discovers that a packet’s source route is
invalid. The route discovery protocol, as implemented
in the CMU extensions to ns, has two phases: a local
broadcast (a ring-0 search) followed by a propagating
search. The ring-0 search is initiated in the hope that
a route can quickly be found in a neighbor’s cache. If
a route is not found within a small amount of time, a
propagating search is attempted. If this fails, the pro-
tocol backs-off and tries again, eventually giving up if a
route is not found. This procedure repeats until all of
the packets queued for that particular destination are
dropped from the queue, or a route is found. A packet
may be dropped from the queue if a route has not been
found within a pre-specified amount of time (the “Send
Buffer Timeout” interval), or if the queue is full and
newly arriving packets force it out. Route discoveries
for the same destination are limited by the back-off and
retry procedure, which is initiated per destination (ver-
sus per packet). Thus, regardless of the number of pack-
ets that need a route to the same destination, only one
route discovery procedure is initiated. Once a route is
found and a packet is sent, there is the possibility that
the route becomes “stale” while the packet is in flight,
because of node mobility (a route is “stale” if some links
on the route are broken). In such an instance, DSR
uses a mechanism called pocket salvaging to re-route
the packet. When a node I detects that the next Iink

in a packet’s route is broken, it first sends a route error
message to the node that generated the packet’s route
to prevent it from sending more packets on the broken
route. Node 2 then attempts to salvage the packet by
checking its cache to see if it knows of another route to
the packet’s destination. If so, node x inserts the new
source route into the packet and forwards it on that
route; if not, the packet is dropped.

We chose to keep most of the parameters of the sim-
ulations identical to those in [5], with a few exceptions.
The following is a discussion of our simulation setup.

Our network model consists of 30 nodes in a 1500x300
meter flat, rectangular area. The nodes move according
to the random waypoint mobility model. In the random
waypoint model, each node x picks a random destina-
tion and speed in the rectangular area and then travels
to the destination in a straight line. Once node x arrives
at its destination, it pauses, picks another destination,
and continues onward. We used a pause time of 0 so that
each node is in constant motion throughout the simula-
tion. All nodes communicate with identical, half-duplex
wireless radios that are modeled after the commercially
available 802.11-based WaveLan wireless radios, which
have a bandwidth of 2Mbps and a nominal transmission
radius of 250m. TCP packet size was 1460 bytes, and
the maximum window was eight packets.

Unless otherwise noted, all of our simulation results
are based on the average throughput of 50 scenarios, or
patterns. Each pattern, generated randomly, designates
the initial placement and heading of each of the nodes
over the simulated time. We use the same pattern for
different mean speeds. Thus, for a given pattern at
different speeds, the same sequence of movements (and
link failures) occur. The speed of each node is uniformly
distributed in an interval of 0.90 - 1.1~ for some mean
speed u. For example, consider one of the patterns, let’s
call it 1. A node I in I that takes time t to move from
point A to point B in the 10 m/s run of I will take time
t/2 to traverse the same distance in the 20 m/s run of
I. So, x will always execute the exact same sequence
of moves in I, just at a proportionally different rate.
See [17] for more details on the mobility patterns.

3 Performance Metric

In this performance study, we set up a single TCP-Reno
connection between a chosen pair of sender and receiver
nodes and measured the throughput over the lifetime of
the connection. We use throughput as the performance
metric in this paper.

The TCP throughput is usually less than “optimal”
due to the TCP sender’s inability to accurtitely deter-
mine the cause of a packet loss. The TCP sender as-
sumes that all packet losses are caused by congestion.
Thus, when a link on a TCP route breaks, the TCP
sender reacts as if congestion was the cause, reducing
its congestion window and, in the instance of a timeout,
backing-off its retransmission timeout (RTO). There-
fore, route changes due to host mobility can have a
detrimental impact on TCP performance.

220

Of?-r?-m
0 2 4 6 8 10

NumberofHops

Hops

11 1463.0
729.0
484.4
339.9
246.4
205.2
198.1
191.8
185.3
182.4

Figure 1: TCP-Reno throughput over an 802.11 fixed,
linear, multi-hop network of varying length (in hops).

To gauge the impact of route changes on TCP perfor-
mance, we derived an upper bound on TCP throughput,
called the expected throughput. The TCP through-
put measure obtained by simulation is then compared
with the expected throughput.

We obtained the expected throughput as follows. We
first simulated a static (fixed) network of n nodes that
formed a linear chain containing n- 1 wireless hops (sim-
ilar to the “string” topology in [15]). The nodes used
the 802.11 MAC protocol for medium access. Then, a
one-way TCP data transfer was performed between the
two nodes at the ends of the linear chain, and the TCP
throughput was measured between these nodes. This
set of TCP throughput measurements is analogous to
that performed by Gerla et al. [15], using similar (but
not identical) MAC protocols.

Figure 1 presents the measured TCP throughput as a
function of the number of hops, averaged over ten runs.
Observe that the throughput decreases rapidly when the
number of hops is increased from 1, and then stabilizes
once the number of hops becomes large. This trend is
similar to that reported in [15]. Therefore, for a detailed
explanation of the reasons behind this trend, we refer
the reader to [15]. Our objective here is to use these
measurements to determine the expected throughput.

The expected throughput is a function of the mobil-
ity pattern. For instance, if two nodes are always adja-
cent and move together (similar to two passengers in a
car), the expected throughput for the TCP connection
between them would be identical to that for 1 hop in
Figure 1. On the other hand, if the two nodes are al-
ways in different partitions of the network, the expected
throughput is 0. In general, to calculate the expected
throughput, let ti be the duration for which the short-
est path from the sender to receiver contains i hops
(1 _< i 5 co). Let ZI denote the throughput obtained
over a linear chain using i hops. When the two nodes
are partitioned, we consider that the number of hops i
is 00 and T, = 0. The expected throughput is then
calculated as

expected throughput= ‘.g *,’
t,

0)
i-1

Of course, x.2, t; is equal to the duration for which the
TCP connectron is in existence. The measured through-

put may never become equal to the expected through-
put, for a number of reasons. For instance, the under-
lying routing protocol may not use the shortest path
between the sender and receiver. Also, Equation 1 does
not take into account the performance overhead of de-
termining new routes after a route failure. Despite these
limitations, the expected throughput serves as a reason-
able upper bound with which the measured performance
may be compared. Such a comparison provides an es-
timate of the performance degradation caused by host
mobility in ad hoc networks.

.-....*........----

"MO
MeanSpeed

(a) Measured and expected throughput, averaged over
the 50 simulated mobility patterns.

0

Pattern Number

(b) Per-pattern measured throughputs for the 20 m/s
and 30 m/s points shown in (u).

Figure 2: Throughput for a single TCP-Reno connec-
tion over a mobile ad hoc network.

4 Measurement of TCP-Reno Throughput

Figure 2(a) reports the measured TCP-Reno through-
put and the expected throughput as a function of the
mean speed of movement.

Note that the expected throughput is independent of
the speed of movement. In Equation 1, when the speed
is increased, the values of ti for all i becomes smaller,

221

~~...~~~~~ i:l..~~.~~~ i:~...~~.~ ~~..,~..~~~

0 MO !ax, 0 500 mm 0 x0 moo 0 MO mm
EwSd TbmuLhpul NW) Expcted Thnw@pul (Kbps) Expe*ed Throughput (Kbps) Expected Thmu:hpul (Kbps)

(a) mean speed = 2 m/s (b) mean speed = 10 m/s (c) mean speed = 20 m/s (d) mean speed = 30 m/s

Figure 3: Comparison of measured and expected throughput for the 50 mobility patterns

but the ratio ti/tj for any i and j remains the same.
Therefore, the expected throughput for a given mobility
pattern, calculated using Equation 1, is independent of
the speed.

Intuition suggests that when the speed is increased
then route failures happen more quickly, resulting in
packet losses, and frequent route discoveries. Thus,
intuitively, TCP throughput should monotonically de-
grade as the speed is increased. In Figure 2(a), the
throughput drops sharply as the mean speed is increased
from 2 m/s to 10 m/s. However, when the mean speed
is increased from 10 m/s to 20 m/s and 30 m/s, the
throughput averaged over the 50 runs decreases only
slightly. This is a counter-intuitive result. However, in
fact, the throughput could have potentially increased
with speed. Consider, for example, Figure 2(b), which
plots the throughput for each of the 50 mobility pat-
terns for the 20 m/s and 30 m/s mean speeds used in
our simulations (the patterns are sorted, in this figure,
in the order of their throughputs at 20 m/s). Observe
that, for certain mobility patterns, the throughput in-
creases when the speed is increased. Later, in Section 5,
we explain this anomaly.

Figure 3 provides a different view of the TCP through-
put measurements. In this figure, we plot the measured
throughput versus expected throughput for each of the
50 mobility patterns. The four graphs correspond to
each of the four different mean speeds of movement. Be-
cause the expected throughput is an upper bound, all
the points plotted in these graphs are below the diag-
onal line (of slope 1). When the measured throughput
is closer to the expected throughput, the correspond-
ing point in the graph is closer to the diagonal line,
and vice versa. The following observations can be made
from Figure 3:

s Although, for any given speed, the points may be
located near or far from the diagonal line, when
the speed is increased the points tend to move
away from the diagonal, signifying a degradation
in throughput. Later in this paper, we show that,
using a TCP optimization, the cluster of points in
this figure can be brought closer to the diagonal.

l On the other hand, for a given speed, certain mo-
bility patterns achieve throughput close to 0, al-
though other mobility patterns (with the same
mean speed) are able to achieve a higher through-
put.

Even at high speeds, some mobility patterns result
in high throughput that is close to the expected
throughput (for instance, see the points close to
the diagonal line in Figure 3(c) and (d)). This oc-
curs for mobility patterns in which, despite mov-
ing fast, the rate of link failures is low (as dis-
cussed earlier, if two nodes move together, the link
between them will not break, regardless of their
speed).

Section 5 provides explanations for some observa-
tions made based on the data presented in Figures 2
and 3.

5 Mobility Induced Behaviors

In this section, we look at examples of mobility induced
behaviors that result in unexpected performance. The
measured throughput of the TCP connection is a func-
tion of the interaction between the 802.11 MAC proto-
col, the ARP protocol, the DSR routing protocol, and
TCP’s congestion control mechanisms. As such, there
are likely to be several plausible explanations for any
given observation. Here, for each observation, we give
one such explanation that we have been able to confirm
using the measured data.

5.1 Some mobility patterns yield very low throughput

We present one observed scenario wherein loss of some
TCP data and acknowledgment packets (due to route
failures) results in zero throughput. Note that we mea-
sure throughput as a function of the amount of data
that has been acknowledged to the sender. In the ex-
ample scenario discussed here, no acknowledgments are
received by the sender during the 120 second lifetime
of the TCP connection (the average speed for this case
is 30 m/s). However, the expected throughput for the
mobility pattern in this run is 694Kbps. A path exists
between the TCP sender and receiver nearly the entire
time.

A condensed version of the simulation packet trace
is shown in Table 1. This trace was obtained with node
1 as the TCP sender and node 2 as the TCP receiver.
In the table, the Eunt column lists the event type - s
denotes that a packet is sent, r denotes that a packet is

222

Evnt
-

b
S

r
S

D
S

S

S

D
D
D

5Tiiqcq
0.000
0.191
6.000
6.045
6.145
6.216

18.000
42.000
90.000

120.000
120.000
120.000

Node SeqNo Pkt
- - z

1 1 tcp
5 1 tcp
1 1 tcp
2 1 tcP
2 1 ack

21 1 ack
1 1 tcp
1 1 tcp
1 1 tcp

15 1 tcp
16 1 tcp
25 1 9

Rem
-

NRTE

NRTE

END
END
END

Table 1: Packet trace for a 30 m/s run that experienced
zero throughput.

received, and D denotes that a packet is dropped. The
Resn column lists the reason why a packet is dropped -
NRTE means that the routing protocol could not find
a route and END means the simulation finished. The
Node, SeqNo, and Pkt columns report the node at which
the event occurred, the TCP sequence number’ of the
packet depicted in the event, and the type of packet,
respectively.

In this scenario, the sender and the receiver node
are initially six hops apart and stay within six hops
of each other for ah but 6 seconds of the 120 second
simulation. For 6 seconds, the network is partitioned,
with the sender and receiver nodes being in different
partitions.

Soon after the first packet is sent by node 1, a Iink
break occurs along the route that causes a partition in
the network. The partition causes the first packet to
be dropped (at time 0.191 seconds) by the routing pro-
tocol on node 5, which was the forwarding node that
detected the Iink failure. Eventually, the TCP sender
on node 1 times-out and retransmits the packet (at
time 6.000). On the second attempt, the packet reaches
the receiver, node 2, who sends a delayed acknowledg-
ment (at time 6.145). However, the acknowledgment is
sent on a route from node 2’s cache that is stale (i.e.,
some links on the route are broken), so the acknowledg-
ment is later dropped (at time 6.216). The remaining
attempts to retransmit the packet also fail because of
stale cached routes. In each instance, the packet is held
by the ARP layer of a forwarding node until the end of
the simulation (see the rows with Eunt = D and Rem
= END in Table 1). Each ARP layer is left holding a
packet because its attempts to resolve the IP address
of the next node in the route to a MAC address fail
because of mobility.

Therefore, the TCP sender is unable to receive any
acknowledgment from the receiver.

‘These are sequence numbers assigned by ns to TCP packets.
ns does not number each octet individually; instead, the packets
are numbered sequentially as 1, 2, etc. All references to TCP
sequence numbers in this paper are the ns assigned sequence
numbers.

5.2 Anomaly: Throughput increases when speed is
increased

In the example discussed in this section, TCP through-
put improves by a factor of 1.5 when the speed is in-
creased from 10 m/s to 20 m/s. In the scenario under
consideration, the TCP sender and receiver were able
to reach each other 100% of the time, and spent 74% of
the time at most two hops away. The nodes were never
more than three hops away.

The characteristics of the connection between the
TCP sender and receiver can be seen in the mobility
pattern profile shown in Figure 4(a) (see [17] for similar
details on ah of the patterns). The ticks shown at the
top of the profile mark the points in the pattern at which
the minimum path between the TCP sender and receiver
changed. The curve shows the minimum path length
(distance) in hops between the sender and receiver for
the duration of the pattern. Notice that a change in the
minimum path is not always caused by a change in path
length (e.g. at the 0.28 mark in Figure 4(a)), because
the nodes on the path may change even though the total
number of hops stays the same.

The other curves in Figure 4 show the mean through-
put over the TCP connection (averaged over 1 second)
for each of the four mean node speeds. Note that, as
mentioned in Section 2, the sequence of moves that each
node makes is identical, regardless of the mean speed.
The only difference is that a distance covered by a node,
say x, over time t, such as in figure (b), takes x a time of
t/2 to cover in figure (c). This is analogous to a movie
in which the time taken to show the same number of
frames at rate r takes haIf the time to show at rate 2r.
Thus, the mobility pattern profile shown in (a) can be
used as a reference point for the other curves in Fig-
ure 4. Note that the variations in the throughput for
curves (b) - (e) are correlated to the path length in (a)
because of the effect shown in Figure 1, which we dis-
cussed earlier. Also note that DSR does not always use
the minimum path when one is available, as seen around
the 1450s mark of Figure 4(b).

Discussion of Figure 4(c) In the 10 m/s run, the rout-
ing protocol uses symmetric forward and reverse routes
(of optimal length) between the TCP sender and re-
ceiver for the first 50s of the simulation, resulting in
good initial throughput. However, the sequence of path
changes around the 50s mark causes the TCP sender to
back-off, from which it fails to recover, until the final
30s of the simulation. The details of the packet activity
around the moment at which the initial back-off occurs
is shown in Figure 5. Leading up to the failure, the for-
ward and reverse routes are symmetric and optimal in
length (two hops). Around the 50.4s mark, the route
breaks (because of mobility) at the Iink between the
intermediate node and the TCP receiver. This results
in the queuing of nearly a fuII window of packets at
the intermediate node. The intermediate node salvages
the queued packets, then successfully delivers them to
the receiver on a new forward route (seen around the
50.58s mark). After detecting the failed link, the r-e+
ceiver chooses a new reverse route for sending acknowl-
edgments, which is different than the forward route.

223

..-
2.0 u 11 Iu ujlnJ&-+

1
0.0,,I # . .., . . .I’,’ #

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.6 0.9 1.0

(a) mobility pattern profile

I’-- , J -. fTfy ,17-
0 500 mu 1500

Time (Seconds)

(b) mean speed = 2 m/s
2.0

1.5

1.0

0.5

0.0 , . . I 1
0 100 200 300

(c) mean speed = 10 m/s

0 50 100 150

Time L9coad.s)

(d) mean speed = 20 m/s

\ , I
0 50 100

Time (tkconds)

(e) mean speed = 30 m/s

Figure 4: TCP-Reno performance for mobility pattern No. 20, demonstrating that an increase in mean node speed
may result in an increase in mean throughput. The ticks at the top of (a) denote changes on the minimum path
between the TCP sender and receiver. The curves in (b) - (e s) h ow the measured throughput for the connection,
averaged over 1 second intervals.

I
. ;1 ;. . Packet Sent

x ’ . r=
. Packet Recv

3 . . . Ack Rem

9 ’
. X Packet Dmppcd

.

,.“““.‘I”“‘,“‘I’.“““‘I”‘.“‘.‘I”“””,I’.”””’I””
50.48 50.58 50.68 50.78 50.88 50.98 51.08

The (seconds)

Figure 5: Detailed packet plot showing the beginning moments, around the 50s mark in Figure 4(c), at which a
sequence of path changes, shown in Figure 4(a), causes TCP to repeatedly timeout and back-off. Packet Sent and
Packet Recu indicate the time at which a TCP data packet with the indicated ns sequence number was sent by the
sender and arrived at the receiver, respectively, Ack Rem indicates the time at which a TCP acknowledgment was
received by the sender with the indicated sequence number, and Packet Dropped indicates the time at which a data
packet with the indicated sequence number was dropped.

224

However, the reverse route that it chooses is also stale,
so several acknowledgments are lost before salvaging re-
sults in the arrival of two of the acknowledgments at the
TCP sender around the 50.72s mark. These acknowl-
edgments trigger a burst of packets from the sender,
which are immediately queued by the forwarding node
at the next hop in the path, because, although the
reverse route is good, the forward route is now bro-
ken by mobility. Another acknowledgment arrives later
(around the 50.87s mark), resulting in the queuing of
another packet. Meanwhile, the forwarding node, which
now has the full window queued, repeatedly tries to sal-
vage the packets. This finally results in the loss of half
of the packets (around the 50.98s mark) by ARP, which
fails to determine the MAC address of the node over
the next hop in the salvaged route because the node
has moved away. However, half of the packets are suc-
cessfully salvaged on an alternate route and delivered
(seen between the 51.0s and 51.08s marks), generating
a sequence of dupacks from the receiver signifying the
packet loss. After the third and fourth dupacks arrive,
the TCP sender enters fast recovery and retransmits
the lost packet (at the 51.08s mark), but the lost pack-
ets cause the sender to timeout. The retransmission of
the lost packet by the sender results in a brief burst of
packets (seen as a spike in throughput around the 50s
mark in Figure 4(c)), but the routes quickly break again,
as the path changes from two to three hops, because of
similarly lost acknowledgments.

For all subsequent timeouts, except one, stale routes
result in packet losses even though the TCP sender and
receiver are never more than three hops distance from
each other. The one exception occurs around the 333s
mark, at which time a retransmitted packet results in
the re-establishment of packet flow when the nodes are
one hop away.

Discussion of Figure 4(d) The 20 m/s run shares many
of the characteristics of the slower 10 m/s run, but re-
sults in higher throughput because a retransmission late
in the pattern (around the 90s mark) succeeds in briefly
re-establishing the flow of packets. Initially, the data
flow is quickly stalled (around the 25s mark) because of
the loss of a full window of packets, which is caused by
the same sequence of link changes in the pattern that af-
fected the 10 m/s run. The throughput, again, degrades
when repeated route failures induce packet losses, caus-
ing the TCP sender to timeout and back-off. However,
unlike the 10 m/s run, the packet flow is re-established
later in the pattern (at the 88s mark) when a retrans-
mitted packet results in the discovery of a good route
when the nodes are only two hops apart. This success
is why the 20 m/s run is able to transfer data at 1.5
times the rate of the 10 m/s run, for the same mobility
pattern.

5.3 Summary and Observations

In this section, we present a summary of the effects of
mobility on TCP performance that we observed in the
previous examples and in our other experiments.

From the previous examples, it is clear that the char-
acteristics of the routjng protocol have a very significant

impact on TCP performance. Most notable were the
problems caused by the caching and propagation of stale
routes. Even in relatively slowly changing topologies,
the inability of the TCP sender’s routing protocol to
quickly recognize and purge stale routes from its cache
resulted in repeated routing failures. Allowing interme-
diate nodes to reply to route requests with routes from
their caches complicated this problem, because they of-
ten responded with stale routes. This was further am-
plified by the fact that other nodes could overhear or
snoop the stale routes in the replies as they were propa-
gated, spreading the bad information to caches in other
nodes. We saw the effects of this problem in our simu-
lations. For instance, in the simulation run presented in
our first example (Section 5.1), the TCP sender tried to
use the same stale route three times because it received
the route repeatedly from other nodes. In the latter two
tries, the stale route came to the TCP sender by way of
salvaging. The stale route that was used was a two hop
route between the TCP sender and receiver. In each of
the two instances, a neighboring node salvaged a packet
from the TCP sender using the stale route, which the
node had stored in its route cache. The neighboring
node then sent the packet on the next hop in the sal-
vaged route, back to the TCP sender. The result was
that the TCP sender ended up trying to forward its
own packet on a route that it had earlier determined
was stale. However, we believe that these problems can
potentially be solved using more effective cache main-
tenance strategies, including simple techniques like dy-
namically adjusting the route cache timeout mechanism
depending on the observed route failure rate, the use of
negative route information (mentioned in [6]), or the use
of signal strength informatibn.

l.O-

0.0 ~....‘....,...‘.....,.........,
0 10 20 30

Mean Mobility Rate (m/s)

Figure 6: A comparison of TCP-Reno performance
when DSR route replies from caches are, and are not,
allowed.

Alternatively, replying from caches can be turned
off altogether. This has a startling improvement in per-
formance, as shown in Figure 6. However, it should be
noted that these results are for a single TCP connection
in a network with no other data traffic. In a network
with multiple data sources, the additional routing traf-
fic introduced when replies from caches are not used
could degrade TCP performance. We intend to study
this further.

225

Another interesting effect of a routing protocol’s be-
havior with respect to mobility was observed in our sec-
ond example (Section 5.2). The fact that the TCP data
flow was lost at the same point in the mobility pattern
for both runs raised questions about what characteristic
of the pattern was causing the failure. From Figure 4(a),
it is clear that the rapid sequence of path changes at
the 0.13 mark caused all four runs to fail. Upon further
inspection, we observed that the routing protocol regu-
larly failed when the minimum path increased in length.
This is apparent in the results shown in Figure 7.

In the first few moments of the mobility pattern,
shown in Figure 7(a), the TCP sender and receiver move
closer to each other, shortening the path between them
from two hops to one (around mark 0.01). A few mo-
ments later (around mark 0.07), they slowly diverge to
a distance of five hops. In the TCP throughput mea-
surements shown in @) - (e), it is evident that the data
flow across the TCP connection is maintained when the
path is shortened, but is lost when the path is length-
ened. This happens several times in the pattern, inde-
pendent of the mean speed of the nodes. Most notably,
(b) shows that even while traveling at a slow speed of
2 m/s, a path change from one hop to two (around the
1500s mark) can stall the data flow. This behavior can
be attributed, in part, to the routing protocol. As the
TCP sender and receiver move closer to each other, DSR
can often maintain a valid route by shortening the ex-
isting route, and often does so before a failure occurs.
However, as the TCP sender and receiver diverge, the
increase in path length eventually causes a route failure
because DSR does not attempt to lengthen a route un-
til a failure occurs. The route failure and subsequent
route discovery process often result in the restoration
of the route only after the TCP sender has repeatedly
timed-out and backed-off, stalling the data flow. This
is further magnified by the caching and propagation of
stale routes, as mentioned previously.

However, intuition suggests that this is not a prob-
lem that is unique to DSR, but will most likely be a
problem for other reactive protocols as well. Thus, per-
haps a metric of routing protocol performance should
not only measure the protocol’s ability to recognize opti-
mal routes, but also to quickly adjust an existing route,
albeit non-optimally.

Another characteristic of DSR that we observed af-
fecting TCP performance was the route request retrans-
mission back-off algorithm. In DSR, if a route request
does not generate a timely reply, the requester times-
out and retransmits the request. Each timeout results
in exponential back-off, which is limited to some fixed
maximum value. If this value is too large, then route re-
quests may occur too infrequently to recognize available
routes in time to prevent TCP’s retransmission timer
from backing-off to a large value, but if it is too small,
then the frequent route requests may cause network con-
gestion. The maximum value suggested in [6] may not
be suitable for good TCP performance.

Based on these observations, it might be suggested
that instead of augmenting TCP/IP, it would be bet-
ter to improve the routing protocols so that mobility
is more effectively masked. Clearly, extensive modifica-
tions to upper layer protocols is less desirable than a

routing protocol that can react quickly and efficiently
such that TCP is not disturbed. However, regardless
of the efficiency and accuracy of the routing protocol,
network partitioning and delays will still occur because
of mobility, which cannot be hidden.

Thus, in the next section, we analyze some simple
modifications to TCP/IP to provide TCP with a mech-
anism by which it can recognize when mobility induced
delays and losses occur, so that it can take appropriate
actions to prevent the invocation of congestion control.

6 TCP Performance Using Explicit Feedback

In this section, we present an analysis of the use of ex-
plicit feedback on the performance of TCP in dynamic
networks. The use of explicit feedback is not new, and
has been proposed as a technique for signaling conges-
tion (ECN [14]), corruption due to wireless transmission
errors (EBSN [l], ELN [3]), and link failures due to mo-
bility ([7], SCPS-TP [9], TCP-F [s]). Our interest in
this section is analyzing the performance of the latter,
which we refer to as Explicit Link Failure Notification
(ELFN) techniques. Although the TCP-F paper studies
a similar idea, the evaluation is not based on an ad hoc
network. Instead, they use a black-box, that does not
include the evaluation of the routing protocol.

The objective of ELFN is to provide the TCP sender
with information about link and route failures so that
it can avoid responding to the failures as if congestion
occurred.

There are several different ways in which the ELFN
message can be implemented. A simple method would
be to use a “host unreachable” ICMP message as a no-
tice to the TCP sender. Alternatively, if the routing
protocol already sends a route failure message to the
sender, then the notice can be piggy-backed on it. This
is the approach we took in this analysis. We modified
DSR’s route failure message to carry a payload similar
to the “host unreachable” ICMP message. In particu-
lar, it carries pertinent fields from the TCP/IP headers
of the packet that instigated the notice, including the
sender and receiver addresses and ports, and the TCP
sequence number. The addresses are used to identify
the connection to which the packet belongs, and the
sequence number is provided as a courtesy.

TCP’s response to this notice is to disable congestion
control mechanisms until the route has been restored.
This involves two different issues: what specific actions
TCP takes in response to the ELFN notice, and how it
determines when the route has been restored.

We used the following simple protocol. When a TCP
sender receives an ELFN, it disables its retransmission
timers and enters a “stand-by” mode. While on stand-
by, a packet is sent at periodic intervals to probe the
network to see if a route has been established. If an ac-
knowledgment is received, then it leaves stand-by mode,
restores its retransmission timers, and continues as nor-
mal. For this study, we elected to use packet probing
instead of an explicit notice to signal that a route has
been re-established.

226

a&o-. . , , s . . . ,-.

g co-

9 4.0-
2 2.0-t a

nn

~~o1.....,.....,.....,.....,.....,.....I.....,.....,.....,.....,
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.6 0.9 1.0

Time (Normalii)

(a) mobility pattern profile

(b) mean speed = 2 m/s

(c) mean speed = 10 m/s

E 2.0 P I.5
5 1.0
r 0.5
c 0.0

0 SO Km 150
Time(Seconds)

(d) mean speed = 20 m/s

I 1
0 50 Km

Time(SccoodF)

(e) mean speed = 30 m/s

Figure 7: TCP-Reno performance for mobility pattern No. 46, showing that an increase in the minimum path length
between the TCP sender and receiver consistently results in the loss of data flow across the connection. The ticks at
the top of (a) denote changes on the minimum path between the TCP sender and receiver. The curves in (b) - (e)
show the measured throughput for the connection, averaged over 1 second intervals.

.’
P ,/.
P lOOO-

1 :

..dr

,: .

E 500-
f

. .

a

. ..t"

8 : /.~~~~

yg , /

01:. . , . . . I..
0 500 lcal

:.
/.'

lWO-

.:. &.

.... $r.
.

m- /.

y

,:'

,+t 4

QA r

i

.:.

. ,...
,:.

OI,‘. . , . ,
0 5m 1CQO

Expected Throughput (Kbps) Expected Throughput (Kbps) Expected Throu@put (Kbpr) Expected Thmqhput (Kbps)

(a) mean speed = 2 m/s (b) mean speed = 10 m/s (c) mean speed = 20 m/s (d) mean speed = 30 m/s

Figure 8: Per-pattern performance of TCP with ELFN using a 2s probe interval.

227

To see what could be achieved with this protocol,
we studied variations in the parameters and actions and
measured their effects on performance. In particular, we
looked at the following:

Variations in the length of the interval between
probe packets.

Modifications to the retransmission timeout value
(RTO) and congestion window upon restoration of
the route.

Different choices of what packet to send as a probe.

The results of these studies are presented below. Each
curve is based on the mean throughput for the 50 dif-
ferent mobility patterns we used earlier.

Figure 8 is the analogue of Figure 3, except that the
results in Figure 8 are based on simulations in which
TCP-Reno was modified to use ELFN (with a 2s probe
interval). Clearly, the use of ELFN has improved the
throughput for each of the speeds, as evidenced by the
closer proximity of the measured pattern throughputs to
the expected throughput line. The tighter clustering of
the points also suggests that the use of ELFN techniques
improves throughput across all patterns, rather than
dramatically increasing just a few.

i
8 O.*-
B
& 0.6-
4
&
$ o.4-

2 y 0.2 -
e
c

2siELFN
4aLFN
6sELFN
IwELFN
3OdELFN
Base TCP

O.O MO
Mean Speed (m/s)

Figure 9: Performance comparison between basic TCP-
Reno and TCP-Reno w/ ELFN using varying probe in-
tervals.

Figure 9 shows the measured throughput as a per-
centage of the expected throughput for various probe
intervals. Based on these results, it is apparent that
the throughput is critically dependent on the time be-
tween probe packets. This dependency exists because
increasing the time between probes delays the discov-
ery of new routes by the length of the interval. Thus,
it is no surprise that if the probe interval is too large,
then the throughput will degrade below that of stan-
dard TCP, as shown by the results for probe intervals
of 30s. Intuitively, if the probe interval is too small,
then the rapid injection of probes into the network will
cause congestion and lower throughput. Thus, instead
of a fixed interval, perhaps choosing an interval that is
a function of the RTT could be a more judicious choice.
However, based on the sensitivity of the throughput to

l.O-

t 0.6-
w
%
8 0.6-
3
&

_

$ o.4-

2
3 0.2-

$

.-A-- JgJq.q
---x-- WELPN
--+A- RTO/WELFN
--•-- BaseTCP

0.0 i.........,.........,.........,
0 10 20 30

Mean Speed (m/s)

Figure 10: Performance comparison of different window
and RTO modifications in response to ELFN.

the interval size, the function must be chosen very care-
fully.

In addition to varying the probe intervals, we also
looked at the performance advantages of adjusting the
congestion window and/or retransmission timeout (RTO)
after the failed route had been restored. These results
are shown in Figure 10. In the figure, ELFN represents
the case where no changes are made to TCP’s state be-
cause of ELFN. Thus, TCP’s state (congestion window,
RTO, etc.) are the same after the route is restored, as
it was when the ELFN was first received. W/EL FN
represents the case where the congestion window is set
to one packet after the route has been restored, and
RTO/W/ELFN represents the case where the RTO is
set to the default initial value (6s in these simulations)
and the window is set to one after the route is restored.
Adjusting the window seemed to have little impact on
the results. This is believed to be due to the fact that
the optimal window (the bandwidth/delay product) of
the simulated network is a relatively small number of
packets, so it takes only a few round trips to ramp up
to the optimal window after a failure. However, altering
the RTO had a more significant impact on throughput.
We suspect that this is due to a combination of factors,
but is most probably caused by the frequency at which
routes break, coupled with ARP’s proclivity, as imple-
mented, to silently drop packets. Thus, if a restored
route immediately breaks again and results in a failed
ARP lookup, then the sender will likely timeout. Given
the length of the timeout, it does not take many of such
occurrences to dramatically affect performance.

Finally, we took a brief look at the impact that
the choice of probe packet had on performance, which
is shown in Figure 11. We considered two possibil-
ities: always send the first packet in the congestion
window (First/ELFN in the figure), or retransmit the
packet with the lowest sequence number among those
signaled as lost in the ELFNs that were received (Low-
est Rcvd/ELFN). The first approach is intuitive, the
second approach was chosen with the optimistic think-
ing that perhaps some packets in the window did get
through, and, if the route is restored quickly, then the
next packet in sequence will be in flight. However, as
shown by the results, this had almost no impact whatso-

228

1

.-a-. FirsuELFN

. . -x . . Lowest R&/ELF?+
-..-- BascTCP

O.O -0

Mean Speed (m’s)

Figure 11: Performance comparison between basic
TCP-Reno and TCP-Reno w/ ELFN using different
choices for the probe packet.

ever. We suspect that this has to do with the fact that
routes, once broken, were rarely restored quickly. In ad-
dition, as shown in Section 5, the presence of different
forward and reverse routes equalizes the two approaches
when only the forward link breaks, since those packets
that did get through before the break are acknowledged
via the reverse channel. Thus, the lowest sequence num-
ber of the packets lost would also happen to be the first
in the window.

7 Related Work

Because routing is an important problem in mobile ad
hoc networks, researchers have explored several routing
protocols for this environment (e.g., [19, 10, 11, 16, 18,
20, 21, 22, 231).

Recently, some researchers have considered the per-
formance of TCP on multi-hop networks [15, 81. Gerla
et al. [15] investigated the impact of the MAC protocol
on performance of TCP on multi-hop networks. Chan-
dran et al. [8] proposed the TCP-Feedback (TCP-F)
protocol, which uses explicit feedback in the form of
route failure and re-establishment control packets. Per-
formance measurements were based on a simple one-
hop network, in which the link between the sender and
receiver failed/recovered according to an exponential
model. Also, the routing protocol was not simulated.

Durst et al. [12] looked at the Space Communica-
tions Protocol Specifications (SCPS), which are a suite
of protocols designed by the Consultative Committee
for Space Data Systems (CCSDS) for satellite commu-
nications. SCPS-TP handles link failures using explicit
feedback in the form of SCPS Control Message Protocol
messages to suspend and resume a TCP sender during
route failure and recovery. Performance measurements
focused on link asymmetry and corruption over last-hop
wireless networks, common in satellite communications.

8 Conclusions and Future Work

In this paper, we investigated the effects of mobility on
TCP performance in mobile ad hoc networks. Through

simulation, we noted that TCP throughput drops sig-
nificantly when node movement causes link failures, due
to TCP’s inability to recognize the difference between
link failure and congestion. We then made this point
clearer by presenting several specific examples, one of
which resulted in zero throughput, the other, in an un-
expected rise in throughput with an increase in speed.
We also introduced a new metric, expected throughput,
which provides a more accurate means of performance
comparison by accounting for the differences in through-
put when the number of hops varies. We then used this
metric to show how the use of explicit link failure noti-
fication (ELFN) can significantly improve TCP perfor-
mance, and gave a performance comparison of a variety
of potential ELFN protocols. In the process, we discov-
ered some surprising effects that route caching can have
on TCP performance.

In the future, we intend to investigate ELFN pro-
tocols in more detail, as well as the effects that other
mobile ad hoc routing protocols have on TCP perfor-
mance. Currently, we are also studying the impact that
the link-layer has on TCP performance, such as aggre-
gate delay caused by local retransmissions over multiple
wireless hops.

1.07

f ox-
w
%
& 0.6-

f
.-+.- -
--*-- RTOlwlELFN

Ii
6 0.4-

--me- BaseTCP

I;;::..
=--:i.y:t::r:::: ::::.. l _._._.___

“m--.... ..-.* .__.. ‘-.”_.. .
.--_ -.*

O.O -0

Mean Speed (m/s)

Figure 12: Performance comparison between base TCP-
Reno and TCP-Reno with two configurations of ELFN
when other traffic is present in the network.

We also intend to continue this study by looking at
the performance of ELFN in congested networks. Ini-
tial results, shown in Figure 12, suggest that similar
performance benefits can be expected in congested net-
works, as in the uncongested network presented in this
paper. Figure 12 shows a performance comparison be-
tween base TCP-Reno, and ELFN with and without
modifications to the RTO and congestion window, as
described in Section 6 (both used 4s probes). The addi-
tional network traffic was provided by ten CBR connec-
tions between eight other nodes, each sending 512-byte
packets at a rate of 10 packets/second, with slightly
staggered start times.

More research is needed to better understand the
complex interactions between TCP and lower layer pro-
tocols when used over mobile ad hoc networks, and to
find solutions to the problems caused by these inter-
actions. One such problem that we identified was the

229

interaction between TCP and ARP. The ARP in the ex-
tensions is based on a BSD implementation, with a one-
packet queue and no request timeout mechanism. Thus,
packets were regularly dropped or held indefinitely while
awaiting resolution. A more advanced ARP needs to be
employed, such as one that will provide for the queuing
of multiple packets awaiting resolution, with a timeout
mechanism to promptly signal failure. Another prob-
lem we identified was the significant impact that route
cache management has on TCP performance. The re-
sults suggest that more aggressive cache management
protocols are needed to counter the effects of mobility,
such as the use of adaptive route cache timeouts, nega-
tive information, or signal strength information.

Acknowledgments

We would like to thank David Maltz, Josh Broth, and
David Johnson at CMU for making their extensions to
ns available, and for initial support. We would also like
to thank the reviewers for their helpful comments.

References

PI

PI

[31

PI

PI

PI

PI

PI

B. S. Bakshi, P. Krishna, D. K. Pradhan, and N. H.
Vaidya, “Improving performance of TCP over wire-
less networks,” in International Conf. Distributed
Computing Systems, May 1997.

H. Balakrishnan and R. Katz, “Explicit loss noti-
fication and wireless web performance,” in IEEE
Globecom Internet Mini-Conference, Sydney, Oct.
1998.

H. Balakrishnan, V. Padmanabhan, S. Seshan, and
R. Katz, “A comparison of mechanisms for improv-
ing TCP performance over wireless links,” in ACM
SIGCOMM, Stanford, CA, Aug. 1996.

H. Balakrishnan, V. N. Padmanabhan, and R. H.
Katz, “The effects of asymmetry on TCP perfor-
mance,* in Proceedings of the IEEE Mobicom‘97,
(Budapest, Hungary), pp. 77-89, September 1997.

J. Broth, D. A. Maltz, D. B. Johnson, Y. Hu, and
J. Jetcheva, “A performance comparison of multi-
hop wireless ad hoc network routing protocols,” in
ACM/IEEE Int. Conf. on Mobile Computing and
Networking, pp. 85-97, Oct. 1998.

J. Broth, D. B. Johnson, and D. A. Maltz, “The
dynamic source routing protocol for mobile ad hoc
networks.” Internet-Draft of the IETF MANET
Working Group, December 1998.

R. Caceres and L. Iftode, “Improving the per-
formance of reliable transport protocols in mo-
bile computing environments,” IEEE Journal on
Selected Areas in Communications, vol. 13, June
1995.

K. Char&an, S. Raghunathan, S. Venkatesan, and
R. Prakash, “A feedback based scheme for improv-
ing TCP performance in ad-hoc wireless networks,”
in Proceedings of International Conference on Dis-
tributed Computing Systems, (Amsterdam), 1998.

PI

WI

P11

WI

1131

D41

P51

[I61

[I71

k31

WI

PO1

PI

PI

P31

Consultative Committee for Space Data Systems
(CCSDS), Space Communications Protocol Specifi-
cations - Transport Protocol (SCPS-TP), Septem-
ber 1997.

M. S. Corson and A. Ephremides, “A distributed
routing algorithm for mobile wireless networks,”
ACM J. Wireless Networks, vol. 1, no. 1, pp. 61-81,
1995.

B. Das, E. Sivakumar, and V. Bhargavan, “Rout-
ing in ad-hoc networks using a virtual backbone.”
manuscript, 1997.

R. C. Durst, G. J. Miller, and E. J. Travis, “TCP
extensions for space communications,” in Proceed-
ings of MOBICOM ‘96, 1996.

K. Fall and K. Varadhan, ns Notes and Docu-
mentation. LBNL, August 1998. http://www-
mash.cs.berkeiey.edu/ns/.

S. Floyd, “Tcp and explicit congestion notifica-
tion,” ACM Computer Communication Review,
vol. 24, pp. 10-24, Oct. 1994.

M. Gerla, K. Tang, and R. Bagrodia, “TCP per-
formance in wireless multi-hop networks,” in Pro-
ceedings of IEEE WMCSA’99 (to appear), (New
Orleans, LA), February 1999.

Z. 3. Haas and M. R. Pearlman, “The zone rout-
ing protocol (ZRP) for ad hoc networks (Internet-
Draft),” Mobile Ad-hoc Network (MANET) Work-
ing Group, IETF, Aug. 1998.

G. Holland and N. Vaidya, “Analysis of tcp per-
formance over mobile ad hoc networks - part ii:
Simulation details and results,” tech. rep., Texas
A&M University, 1999. (in preparation).

D. Johnson, D. A. Maltz, and J. Broth, “The dy-
namic source routing protocol for mobile ad hoc
networks (Internet-Draft),” Mobile Ad-hoc Network
(MANET) Working Group, IETF, Mar. 1998.

Y.-B. Ko and N. H. Vaidya, ‘LLocation-aided
routing (LAR) in mobile ad hoc networks,” in
ACM/IEEE Int. Conf. on Mobile Computing and
Networking (MobiCom’98), October 1998.

C. E. Perkins and E. M. Royer, “Ad hoc on demand
distance vector (AODV) routing (Internet-Draft),”
Mobile Ad-hoc Network (MANET) Working Group,
IETF, Aug. 1998.

S. Ramanathan and M. Steenstrup, “A survey of
routing techniques for mobile communication net-
works,” Mobile Networks and Applications, pp. 89-
104, 1996.

R. Sivakumar, P. Sinha, and V. Bharghavan, “Core
extraction distributed ad hoc routing (CEDAR)
specification (Internet-Draft),” Mobile Ad-hoc Net-
work (MANET) Working Group, IETF, Oct. 1998.

C. Toh, “A novel distributed routing protocol to
support ad-hoc mobile computing,” Wireless Per-
sonal Communication, Jan. 1997.

230

