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Abstract 

Mobile ad hoc networks have gained a lot of attention 
lately as a means of providing continuous network 
connectivity to mobile computing devices regardless 
of physical location. Recently, a large amount of re- 
search has focused on the routing protocols needed 
in such an environment. In this paper, we investi- 
gate the effects that link breakage due to mobility 
has on TCP performance. Through simulation, we 
show that TCP throughput drops significantly when 
nodes move, due to TCP’s inability to recognize the 
difference between link failure and congestion. We 
also analyze specific examples, such as a situation 
where throughput is zero for a particular connec- 
tion. We introduce a new metric, expected throughput, 
for the comparison of throughput in multi-hop net- - - 
works, and then use this metric to show how the use 
of explicit link failure notification (ELFN) techniques 
can significantly improve TCP performance. 

1 Introduction 

With the proliferation of mobile computing devices, the 
demand for continuous network connectivity regardless 
of physical location has spurred interest in the use of 
mobile ad hoc networks. A mobile ad hoc network 
is a network in which a group of mobile computing 
devices communicate among themselves using wireless 
radios, without the aid of a fixed networking infras- 
tructure. Their use is being proposed as an exten- 
sion to the Internet, but they can be used anywhere 
that a fixed infrastructure does not exist, or is not de- 
sirable. A lot of research of mobile ad hoc networks 
has focused on the development of routing protocols 
(e.g. [19, 10, 11, 16, 18, 20, 21, 22, 231. 
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Our research is focused on the performance of TCP 
over mobile ad hoc networks. 

Since TCP/IP is the standard network protocol stack 
on the Internet, its use over mobile ad hoc networks is 
a certainty. Not only does it leverage a large number of 
applications, but its use also allows seamless integration 
with the Internet, where available. 

However, earlier research on cellular wireless sys- 
tems showed that TCP suffers poor performance in wire- 
less networks because of packet losses and corruption 
caused by wireless induced errors. Thus, a lot of re- 
search has since focused on mechanisms to improve TCP 
performance in cellular wireless systems (e.g. [2, 31). 
Further studies have addressed other network problems 
that negatively affect TCP performance, such as band- 
width asymmetry and large round-trip times, which are 
prevalent in satellite networks (e.g. [12, 41). 

In this paper, we address another network character- 
istic that impacts TCP performance, which is common 
in mobile ad hoc networks: link failures due to mobil- 
ity. We first present a performance analysis of standard 
TCP over mobile ad hoc networks, and then present an 
analysis of the use of explicit notification techniques to 
counter the affects of link failures. 

2 Simulation Environment and Methodology 

The results in this paper are based on simulations using 
the ns network simulator from Lawrence Berkeley Na- 
tional Laboratory (LBNL) [13], with extensions from 
the MONARCH project at Carnegie Mellon [5]. The 
extensions include a set of mobile ad hoc network rout- 
ing protocols and an implementation of BSD’s ARP 
protocol, as well as an 802.11 MAC layer and a radio 
propagation model. Also included are mechanisms to 
model node mobility using pre-computed mobility pat- 
terns that are fed to the simulation at run-time. For 
more information about the extensions, we refer the 
reader to [5]. Unless otherwise noted, no modifications 
were made to the simulator described in [5], beyond mi- 
nor bug fixes that were necessary to complete the study. 

All results are based on a network configuration con- 
sisting of TCP-Reno over IP on an 802.11 wireless net- 
work, with routing provided by the Dynamic Source 
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Routing (DSR) protocol and BSD’s ARP protocol (used 
to resolve IP addresses to MAC addresses). 

The choice of DSR as the routing protocol was based 
on the availability of the ns extensions at the time when 
this study was initiated. Our goal was only to’ observe 
TCP’s performance in the presence of mobility induced 
failures in a plausible network environment, for which 
any of the proposed mobile wireless ad hoc routing pro- 
tocols would have sufficed. However, since we frequently 
refer to the routing protocol in this paper, the next para- 
graph is a brief primer on DSR to familiarize the reader 
with its terminology and characteristics. 

The Dynamic Source Routing (DSR) protocol was 
developed by researchers at CMU for use in mobile ad 
hoc networks [6]. In DSR, each packet injected into 
the network contains a routing header that specifies the 
complete sequence of nodes on which the packet should 
be forwarded. This route is obtained through route dis- 
covery. When a node has a packet to send for which 
it does not have a route, it initiates route discovery 
by broadcasting a route request. This request is propa- 
gated through the network until it reaches a node, say 
z, that knows of a route to the destination. Node G then 
sends a route reply to the requester with the new route 
formed from the route at node z concatenated with the 
source route in the request. To limit how far a request 
is propagated, a time-to-live (TTL) field is attached to 
every request along with a unique request identifier. A 
node that receives a route request that it has seen be- 
fore, or that has lived beyond its time-to-live, drops 
the request. To reduce the number of route discover- 
ies, each node maintains a cache of routes that it has 
learned. A node may learn of a route through route dis- 
covery, or through other means such as snooping routes 
in route replies and data packets, or eavesdropping on 
local broadcasts. This cache is updated through route 
error messages. Route error messages are sent by a 
node when it discovers that a packet’s source route is 
invalid. The route discovery protocol, as implemented 
in the CMU extensions to ns, has two phases: a local 
broadcast (a ring-0 search) followed by a propagating 
search. The ring-0 search is initiated in the hope that 
a route can quickly be found in a neighbor’s cache. If 
a route is not found within a small amount of time, a 
propagating search is attempted. If this fails, the pro- 
tocol backs-off and tries again, eventually giving up if a 
route is not found. This procedure repeats until all of 
the packets queued for that particular destination are 
dropped from the queue, or a route is found. A packet 
may be dropped from the queue if a route has not been 
found within a pre-specified amount of time (the “Send 
Buffer Timeout” interval), or if the queue is full and 
newly arriving packets force it out. Route discoveries 
for the same destination are limited by the back-off and 
retry procedure, which is initiated per destination (ver- 
sus per packet). Thus, regardless of the number of pack- 
ets that need a route to the same destination, only one 
route discovery procedure is initiated. Once a route is 
found and a packet is sent, there is the possibility that 
the route becomes “stale” while the packet is in flight, 
because of node mobility (a route is “stale” if some links 
on the route are broken). In such an instance, DSR 
uses a mechanism called pocket salvaging to re-route 
the packet. When a node I detects that the next Iink 

in a packet’s route is broken, it first sends a route error 
message to the node that generated the packet’s route 
to prevent it from sending more packets on the broken 
route. Node 2 then attempts to salvage the packet by 
checking its cache to see if it knows of another route to 
the packet’s destination. If so, node x inserts the new 
source route into the packet and forwards it on that 
route; if not, the packet is dropped. 

We chose to keep most of the parameters of the sim- 
ulations identical to those in [5], with a few exceptions. 
The following is a discussion of our simulation setup. 

Our network model consists of 30 nodes in a 1500x300 
meter flat, rectangular area. The nodes move according 
to the random waypoint mobility model. In the random 
waypoint model, each node x picks a random destina- 
tion and speed in the rectangular area and then travels 
to the destination in a straight line. Once node x arrives 
at its destination, it pauses, picks another destination, 
and continues onward. We used a pause time of 0 so that 
each node is in constant motion throughout the simula- 
tion. All nodes communicate with identical, half-duplex 
wireless radios that are modeled after the commercially 
available 802.11-based WaveLan wireless radios, which 
have a bandwidth of 2Mbps and a nominal transmission 
radius of 250m. TCP packet size was 1460 bytes, and 
the maximum window was eight packets. 

Unless otherwise noted, all of our simulation results 
are based on the average throughput of 50 scenarios, or 
patterns. Each pattern, generated randomly, designates 
the initial placement and heading of each of the nodes 
over the simulated time. We use the same pattern for 
different mean speeds. Thus, for a given pattern at 
different speeds, the same sequence of movements (and 
link failures) occur. The speed of each node is uniformly 
distributed in an interval of 0.90 - 1.1~ for some mean 
speed u. For example, consider one of the patterns, let’s 
call it 1. A node I in I that takes time t to move from 
point A to point B in the 10 m/s run of I will take time 
t/2 to traverse the same distance in the 20 m/s run of 
I. So, x will always execute the exact same sequence 
of moves in I, just at a proportionally different rate. 
See [17] for more details on the mobility patterns. 

3 Performance Metric 

In this performance study, we set up a single TCP-Reno 
connection between a chosen pair of sender and receiver 
nodes and measured the throughput over the lifetime of 
the connection. We use throughput as the performance 
metric in this paper. 

The TCP throughput is usually less than “optimal” 
due to the TCP sender’s inability to accurtitely deter- 
mine the cause of a packet loss. The TCP sender as- 
sumes that all packet losses are caused by congestion. 
Thus, when a link on a TCP route breaks, the TCP 
sender reacts as if congestion was the cause, reducing 
its congestion window and, in the instance of a timeout, 
backing-off its retransmission timeout (RTO). There- 
fore, route changes due to host mobility can have a 
detrimental impact on TCP performance. 
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Figure 1: TCP-Reno throughput over an 802.11 fixed, 
linear, multi-hop network of varying length (in hops). 

To gauge the impact of route changes on TCP perfor- 
mance, we derived an upper bound on TCP throughput, 
called the expected throughput. The TCP through- 
put measure obtained by simulation is then compared 
with the expected throughput. 

We obtained the expected throughput as follows. We 
first simulated a static (fixed) network of n nodes that 
formed a linear chain containing n- 1 wireless hops (sim- 
ilar to the “string” topology in [15]). The nodes used 
the 802.11 MAC protocol for medium access. Then, a 
one-way TCP data transfer was performed between the 
two nodes at the ends of the linear chain, and the TCP 
throughput was measured between these nodes. This 
set of TCP throughput measurements is analogous to 
that performed by Gerla et al. [15], using similar (but 
not identical) MAC protocols. 

Figure 1 presents the measured TCP throughput as a 
function of the number of hops, averaged over ten runs. 
Observe that the throughput decreases rapidly when the 
number of hops is increased from 1, and then stabilizes 
once the number of hops becomes large. This trend is 
similar to that reported in [15]. Therefore, for a detailed 
explanation of the reasons behind this trend, we refer 
the reader to [15]. Our objective here is to use these 
measurements to determine the expected throughput. 

The expected throughput is a function of the mobil- 
ity pattern. For instance, if two nodes are always adja- 
cent and move together (similar to two passengers in a 
car), the expected throughput for the TCP connection 
between them would be identical to that for 1 hop in 
Figure 1. On the other hand, if the two nodes are al- 
ways in different partitions of the network, the expected 
throughput is 0. In general, to calculate the expected 
throughput, let ti be the duration for which the short- 
est path from the sender to receiver contains i hops 
(1 _< i 5 co). Let ZI denote the throughput obtained 
over a linear chain using i hops. When the two nodes 
are partitioned, we consider that the number of hops i 
is 00 and T, = 0. The expected throughput is then 
calculated as 

expected throughput= ‘.g *,’ 
t, 

0) 
i-1 

Of course, x.2, t; is equal to the duration for which the 
TCP connectron is in existence. The measured through- 

put may never become equal to the expected through- 
put, for a number of reasons. For instance, the under- 
lying routing protocol may not use the shortest path 
between the sender and receiver. Also, Equation 1 does 
not take into account the performance overhead of de- 
termining new routes after a route failure. Despite these 
limitations, the expected throughput serves as a reason- 
able upper bound with which the measured performance 
may be compared. Such a comparison provides an es- 
timate of the performance degradation caused by host 
mobility in ad hoc networks. 

. . . . ..-....*........---- 

"MO 
MeanSpeed 

(a) Measured and expected throughput, averaged over 
the 50 simulated mobility patterns. 

0 

Pattern Number 

(b) Per-pattern measured throughputs for the 20 m/s 
and 30 m/s points shown in (u). 

Figure 2: Throughput for a single TCP-Reno connec- 
tion over a mobile ad hoc network. 

4 Measurement of TCP-Reno Throughput 

Figure 2(a) reports the measured TCP-Reno through- 
put and the expected throughput as a function of the 
mean speed of movement. 

Note that the expected throughput is independent of 
the speed of movement. In Equation 1, when the speed 
is increased, the values of ti for all i becomes smaller, 
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Figure 3: Comparison of measured and expected throughput for the 50 mobility patterns 

but the ratio ti/tj for any i and j remains the same. 
Therefore, the expected throughput for a given mobility 
pattern, calculated using Equation 1, is independent of 
the speed. 

Intuition suggests that when the speed is increased 
then route failures happen more quickly, resulting in 
packet losses, and frequent route discoveries. Thus, 
intuitively, TCP throughput should monotonically de- 
grade as the speed is increased. In Figure 2(a), the 
throughput drops sharply as the mean speed is increased 
from 2 m/s to 10 m/s. However, when the mean speed 
is increased from 10 m/s to 20 m/s and 30 m/s, the 
throughput averaged over the 50 runs decreases only 
slightly. This is a counter-intuitive result. However, in 
fact, the throughput could have potentially increased 
with speed. Consider, for example, Figure 2(b), which 
plots the throughput for each of the 50 mobility pat- 
terns for the 20 m/s and 30 m/s mean speeds used in 
our simulations (the patterns are sorted, in this figure, 
in the order of their throughputs at 20 m/s). Observe 
that, for certain mobility patterns, the throughput in- 
creases when the speed is increased. Later, in Section 5, 
we explain this anomaly. 

Figure 3 provides a different view of the TCP through- 
put measurements. In this figure, we plot the measured 
throughput versus expected throughput for each of the 
50 mobility patterns. The four graphs correspond to 
each of the four different mean speeds of movement. Be- 
cause the expected throughput is an upper bound, all 
the points plotted in these graphs are below the diag- 
onal line (of slope 1). When the measured throughput 
is closer to the expected throughput, the correspond- 
ing point in the graph is closer to the diagonal line, 
and vice versa. The following observations can be made 
from Figure 3: 

s Although, for any given speed, the points may be 
located near or far from the diagonal line, when 
the speed is increased the points tend to move 
away from the diagonal, signifying a degradation 
in throughput. Later in this paper, we show that, 
using a TCP optimization, the cluster of points in 
this figure can be brought closer to the diagonal. 

l On the other hand, for a given speed, certain mo- 
bility patterns achieve throughput close to 0, al- 
though other mobility patterns (with the same 
mean speed) are able to achieve a higher through- 
put. 

Even at high speeds, some mobility patterns result 
in high throughput that is close to the expected 
throughput (for instance, see the points close to 
the diagonal line in Figure 3(c) and (d)). This oc- 
curs for mobility patterns in which, despite mov- 
ing fast, the rate of link failures is low (as dis- 
cussed earlier, if two nodes move together, the link 
between them will not break, regardless of their 
speed). 

Section 5 provides explanations for some observa- 
tions made based on the data presented in Figures 2 
and 3. 

5 Mobility Induced Behaviors 

In this section, we look at examples of mobility induced 
behaviors that result in unexpected performance. The 
measured throughput of the TCP connection is a func- 
tion of the interaction between the 802.11 MAC proto- 
col, the ARP protocol, the DSR routing protocol, and 
TCP’s congestion control mechanisms. As such, there 
are likely to be several plausible explanations for any 
given observation. Here, for each observation, we give 
one such explanation that we have been able to confirm 
using the measured data. 

5.1 Some mobility patterns yield very low throughput 

We present one observed scenario wherein loss of some 
TCP data and acknowledgment packets (due to route 
failures) results in zero throughput. Note that we mea- 
sure throughput as a function of the amount of data 
that has been acknowledged to the sender. In the ex- 
ample scenario discussed here, no acknowledgments are 
received by the sender during the 120 second lifetime 
of the TCP connection (the average speed for this case 
is 30 m/s). However, the expected throughput for the 
mobility pattern in this run is 694Kbps. A path exists 
between the TCP sender and receiver nearly the entire 
time. 

A condensed version of the simulation packet trace 
is shown in Table 1. This trace was obtained with node 
1 as the TCP sender and node 2 as the TCP receiver. 
In the table, the Eunt column lists the event type - s 
denotes that a packet is sent, r denotes that a packet is 
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Evnt 
- 

b 
S 

r 
S 

D 
S 

S 

S 

D 
D 
D 

5Tiiqcq 
0.000 
0.191 
6.000 
6.045 
6.145 
6.216 

18.000 
42.000 
90.000 

120.000 
120.000 
120.000 

Node SeqNo Pkt 
- - z 

1 1 tcp 
5 1 tcp 
1 1 tcp 
2 1 tcP 
2 1 ack 

21 1 ack 
1 1 tcp 
1 1 tcp 
1 1 tcp 

15 1 tcp 
16 1 tcp 
25 1 9 

Rem 
- 

NRTE 

NRTE 

END 
END 
END 

Table 1: Packet trace for a 30 m/s run that experienced 
zero throughput. 

received, and D denotes that a packet is dropped. The 
Resn column lists the reason why a packet is dropped - 
NRTE means that the routing protocol could not find 
a route and END means the simulation finished. The 
Node, SeqNo, and Pkt columns report the node at which 
the event occurred, the TCP sequence number’ of the 
packet depicted in the event, and the type of packet, 
respectively. 

In this scenario, the sender and the receiver node 
are initially six hops apart and stay within six hops 
of each other for ah but 6 seconds of the 120 second 
simulation. For 6 seconds, the network is partitioned, 
with the sender and receiver nodes being in different 
partitions. 

Soon after the first packet is sent by node 1, a Iink 
break occurs along the route that causes a partition in 
the network. The partition causes the first packet to 
be dropped (at time 0.191 seconds) by the routing pro- 
tocol on node 5, which was the forwarding node that 
detected the Iink failure. Eventually, the TCP sender 
on node 1 times-out and retransmits the packet (at 
time 6.000). On the second attempt, the packet reaches 
the receiver, node 2, who sends a delayed acknowledg- 
ment (at time 6.145). However, the acknowledgment is 
sent on a route from node 2’s cache that is stale (i.e., 
some links on the route are broken), so the acknowledg- 
ment is later dropped (at time 6.216). The remaining 
attempts to retransmit the packet also fail because of 
stale cached routes. In each instance, the packet is held 
by the ARP layer of a forwarding node until the end of 
the simulation (see the rows with Eunt = D and Rem 
= END in Table 1). Each ARP layer is left holding a 
packet because its attempts to resolve the IP address 
of the next node in the route to a MAC address fail 
because of mobility. 

Therefore, the TCP sender is unable to receive any 
acknowledgment from the receiver. 

‘These are sequence numbers assigned by ns to TCP packets. 
ns does not number each octet individually; instead, the packets 
are numbered sequentially as 1, 2, etc. All references to TCP 
sequence numbers in this paper are the ns assigned sequence 
numbers. 

5.2 Anomaly: Throughput increases when speed is 
increased 

In the example discussed in this section, TCP through- 
put improves by a factor of 1.5 when the speed is in- 
creased from 10 m/s to 20 m/s. In the scenario under 
consideration, the TCP sender and receiver were able 
to reach each other 100% of the time, and spent 74% of 
the time at most two hops away. The nodes were never 
more than three hops away. 

The characteristics of the connection between the 
TCP sender and receiver can be seen in the mobility 
pattern profile shown in Figure 4(a) (see [17] for similar 
details on ah of the patterns). The ticks shown at the 
top of the profile mark the points in the pattern at which 
the minimum path between the TCP sender and receiver 
changed. The curve shows the minimum path length 
(distance) in hops between the sender and receiver for 
the duration of the pattern. Notice that a change in the 
minimum path is not always caused by a change in path 
length (e.g. at the 0.28 mark in Figure 4(a)), because 
the nodes on the path may change even though the total 
number of hops stays the same. 

The other curves in Figure 4 show the mean through- 
put over the TCP connection (averaged over 1 second) 
for each of the four mean node speeds. Note that, as 
mentioned in Section 2, the sequence of moves that each 
node makes is identical, regardless of the mean speed. 
The only difference is that a distance covered by a node, 
say x, over time t, such as in figure (b), takes x a time of 
t/2 to cover in figure (c). This is analogous to a movie 
in which the time taken to show the same number of 
frames at rate r takes haIf the time to show at rate 2r. 
Thus, the mobility pattern profile shown in (a) can be 
used as a reference point for the other curves in Fig- 
ure 4. Note that the variations in the throughput for 
curves (b) - (e) are correlated to the path length in (a) 
because of the effect shown in Figure 1, which we dis- 
cussed earlier. Also note that DSR does not always use 
the minimum path when one is available, as seen around 
the 1450s mark of Figure 4(b). 

Discussion of Figure 4(c) In the 10 m/s run, the rout- 
ing protocol uses symmetric forward and reverse routes 
(of optimal length) between the TCP sender and re- 
ceiver for the first 50s of the simulation, resulting in 
good initial throughput. However, the sequence of path 
changes around the 50s mark causes the TCP sender to 
back-off, from which it fails to recover, until the final 
30s of the simulation. The details of the packet activity 
around the moment at which the initial back-off occurs 
is shown in Figure 5. Leading up to the failure, the for- 
ward and reverse routes are symmetric and optimal in 
length (two hops). Around the 50.4s mark, the route 
breaks (because of mobility) at the Iink between the 
intermediate node and the TCP receiver. This results 
in the queuing of nearly a fuII window of packets at 
the intermediate node. The intermediate node salvages 
the queued packets, then successfully delivers them to 
the receiver on a new forward route (seen around the 
50.58s mark). After detecting the failed link, the r-e+ 
ceiver chooses a new reverse route for sending acknowl- 
edgments, which is different than the forward route. 
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Figure 5: Detailed packet plot showing the beginning moments, around the 50s mark in Figure 4(c), at which a 
sequence of path changes, shown in Figure 4(a), causes TCP to repeatedly timeout and back-off. Packet Sent and 
Packet Recu indicate the time at which a TCP data packet with the indicated ns sequence number was sent by the 
sender and arrived at the receiver, respectively, Ack Rem indicates the time at which a TCP acknowledgment was 
received by the sender with the indicated sequence number, and Packet Dropped indicates the time at which a data 
packet with the indicated sequence number was dropped. 
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However, the reverse route that it chooses is also stale, 
so several acknowledgments are lost before salvaging re- 
sults in the arrival of two of the acknowledgments at the 
TCP sender around the 50.72s mark. These acknowl- 
edgments trigger a burst of packets from the sender, 
which are immediately queued by the forwarding node 
at the next hop in the path, because, although the 
reverse route is good, the forward route is now bro- 
ken by mobility. Another acknowledgment arrives later 
(around the 50.87s mark), resulting in the queuing of 
another packet. Meanwhile, the forwarding node, which 
now has the full window queued, repeatedly tries to sal- 
vage the packets. This finally results in the loss of half 
of the packets (around the 50.98s mark) by ARP, which 
fails to determine the MAC address of the node over 
the next hop in the salvaged route because the node 
has moved away. However, half of the packets are suc- 
cessfully salvaged on an alternate route and delivered 
(seen between the 51.0s and 51.08s marks), generating 
a sequence of dupacks from the receiver signifying the 
packet loss. After the third and fourth dupacks arrive, 
the TCP sender enters fast recovery and retransmits 
the lost packet (at the 51.08s mark), but the lost pack- 
ets cause the sender to timeout. The retransmission of 
the lost packet by the sender results in a brief burst of 
packets (seen as a spike in throughput around the 50s 
mark in Figure 4(c)), but the routes quickly break again, 
as the path changes from two to three hops, because of 
similarly lost acknowledgments. 

For all subsequent timeouts, except one, stale routes 
result in packet losses even though the TCP sender and 
receiver are never more than three hops distance from 
each other. The one exception occurs around the 333s 
mark, at which time a retransmitted packet results in 
the re-establishment of packet flow when the nodes are 
one hop away. 

Discussion of Figure 4(d) The 20 m/s run shares many 
of the characteristics of the slower 10 m/s run, but re- 
sults in higher throughput because a retransmission late 
in the pattern (around the 90s mark) succeeds in briefly 
re-establishing the flow of packets. Initially, the data 
flow is quickly stalled (around the 25s mark) because of 
the loss of a full window of packets, which is caused by 
the same sequence of link changes in the pattern that af- 
fected the 10 m/s run. The throughput, again, degrades 
when repeated route failures induce packet losses, caus- 
ing the TCP sender to timeout and back-off. However, 
unlike the 10 m/s run, the packet flow is re-established 
later in the pattern (at the 88s mark) when a retrans- 
mitted packet results in the discovery of a good route 
when the nodes are only two hops apart. This success 
is why the 20 m/s run is able to transfer data at 1.5 
times the rate of the 10 m/s run, for the same mobility 
pattern. 

5.3 Summary and Observations 

In this section, we present a summary of the effects of 
mobility on TCP performance that we observed in the 
previous examples and in our other experiments. 

From the previous examples, it is clear that the char- 
acteristics of the routjng protocol have a very significant 

impact on TCP performance. Most notable were the 
problems caused by the caching and propagation of stale 
routes. Even in relatively slowly changing topologies, 
the inability of the TCP sender’s routing protocol to 
quickly recognize and purge stale routes from its cache 
resulted in repeated routing failures. Allowing interme- 
diate nodes to reply to route requests with routes from 
their caches complicated this problem, because they of- 
ten responded with stale routes. This was further am- 
plified by the fact that other nodes could overhear or 
snoop the stale routes in the replies as they were propa- 
gated, spreading the bad information to caches in other 
nodes. We saw the effects of this problem in our simu- 
lations. For instance, in the simulation run presented in 
our first example (Section 5.1), the TCP sender tried to 
use the same stale route three times because it received 
the route repeatedly from other nodes. In the latter two 
tries, the stale route came to the TCP sender by way of 
salvaging. The stale route that was used was a two hop 
route between the TCP sender and receiver. In each of 
the two instances, a neighboring node salvaged a packet 
from the TCP sender using the stale route, which the 
node had stored in its route cache. The neighboring 
node then sent the packet on the next hop in the sal- 
vaged route, back to the TCP sender. The result was 
that the TCP sender ended up trying to forward its 
own packet on a route that it had earlier determined 
was stale. However, we believe that these problems can 
potentially be solved using more effective cache main- 
tenance strategies, including simple techniques like dy- 
namically adjusting the route cache timeout mechanism 
depending on the observed route failure rate, the use of 
negative route information (mentioned in [6]), or the use 
of signal strength informatibn. 
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Figure 6: A comparison of TCP-Reno performance 
when DSR route replies from caches are, and are not, 
allowed. 

Alternatively, replying from caches can be turned 
off altogether. This has a startling improvement in per- 
formance, as shown in Figure 6. However, it should be 
noted that these results are for a single TCP connection 
in a network with no other data traffic. In a network 
with multiple data sources, the additional routing traf- 
fic introduced when replies from caches are not used 
could degrade TCP performance. We intend to study 
this further. 
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Another interesting effect of a routing protocol’s be- 
havior with respect to mobility was observed in our sec- 
ond example (Section 5.2). The fact that the TCP data 
flow was lost at the same point in the mobility pattern 
for both runs raised questions about what characteristic 
of the pattern was causing the failure. From Figure 4(a), 
it is clear that the rapid sequence of path changes at 
the 0.13 mark caused all four runs to fail. Upon further 
inspection, we observed that the routing protocol regu- 
larly failed when the minimum path increased in length. 
This is apparent in the results shown in Figure 7. 

In the first few moments of the mobility pattern, 
shown in Figure 7(a), the TCP sender and receiver move 
closer to each other, shortening the path between them 
from two hops to one (around mark 0.01). A few mo- 
ments later (around mark 0.07), they slowly diverge to 
a distance of five hops. In the TCP throughput mea- 
surements shown in @) - (e), it is evident that the data 
flow across the TCP connection is maintained when the 
path is shortened, but is lost when the path is length- 
ened. This happens several times in the pattern, inde- 
pendent of the mean speed of the nodes. Most notably, 
(b) shows that even while traveling at a slow speed of 
2 m/s, a path change from one hop to two (around the 
1500s mark) can stall the data flow. This behavior can 
be attributed, in part, to the routing protocol. As the 
TCP sender and receiver move closer to each other, DSR 
can often maintain a valid route by shortening the ex- 
isting route, and often does so before a failure occurs. 
However, as the TCP sender and receiver diverge, the 
increase in path length eventually causes a route failure 
because DSR does not attempt to lengthen a route un- 
til a failure occurs. The route failure and subsequent 
route discovery process often result in the restoration 
of the route only after the TCP sender has repeatedly 
timed-out and backed-off, stalling the data flow. This 
is further magnified by the caching and propagation of 
stale routes, as mentioned previously. 

However, intuition suggests that this is not a prob- 
lem that is unique to DSR, but will most likely be a 
problem for other reactive protocols as well. Thus, per- 
haps a metric of routing protocol performance should 
not only measure the protocol’s ability to recognize opti- 
mal routes, but also to quickly adjust an existing route, 
albeit non-optimally. 

Another characteristic of DSR that we observed af- 
fecting TCP performance was the route request retrans- 
mission back-off algorithm. In DSR, if a route request 
does not generate a timely reply, the requester times- 
out and retransmits the request. Each timeout results 
in exponential back-off, which is limited to some fixed 
maximum value. If this value is too large, then route re- 
quests may occur too infrequently to recognize available 
routes in time to prevent TCP’s retransmission timer 
from backing-off to a large value, but if it is too small, 
then the frequent route requests may cause network con- 
gestion. The maximum value suggested in [6] may not 
be suitable for good TCP performance. 

Based on these observations, it might be suggested 
that instead of augmenting TCP/IP, it would be bet- 
ter to improve the routing protocols so that mobility 
is more effectively masked. Clearly, extensive modifica- 
tions to upper layer protocols is less desirable than a 

routing protocol that can react quickly and efficiently 
such that TCP is not disturbed. However, regardless 
of the efficiency and accuracy of the routing protocol, 
network partitioning and delays will still occur because 
of mobility, which cannot be hidden. 

Thus, in the next section, we analyze some simple 
modifications to TCP/IP to provide TCP with a mech- 
anism by which it can recognize when mobility induced 
delays and losses occur, so that it can take appropriate 
actions to prevent the invocation of congestion control. 

6 TCP Performance Using Explicit Feedback 

In this section, we present an analysis of the use of ex- 
plicit feedback on the performance of TCP in dynamic 
networks. The use of explicit feedback is not new, and 
has been proposed as a technique for signaling conges- 
tion (ECN [14]), corruption due to wireless transmission 
errors (EBSN [l], ELN [3]), and link failures due to mo- 
bility ([7], SCPS-TP [9], TCP-F [s]). Our interest in 
this section is analyzing the performance of the latter, 
which we refer to as Explicit Link Failure Notification 
(ELFN) techniques. Although the TCP-F paper studies 
a similar idea, the evaluation is not based on an ad hoc 
network. Instead, they use a black-box, that does not 
include the evaluation of the routing protocol. 

The objective of ELFN is to provide the TCP sender 
with information about link and route failures so that 
it can avoid responding to the failures as if congestion 
occurred. 

There are several different ways in which the ELFN 
message can be implemented. A simple method would 
be to use a “host unreachable” ICMP message as a no- 
tice to the TCP sender. Alternatively, if the routing 
protocol already sends a route failure message to the 
sender, then the notice can be piggy-backed on it. This 
is the approach we took in this analysis. We modified 
DSR’s route failure message to carry a payload similar 
to the “host unreachable” ICMP message. In particu- 
lar, it carries pertinent fields from the TCP/IP headers 
of the packet that instigated the notice, including the 
sender and receiver addresses and ports, and the TCP 
sequence number. The addresses are used to identify 
the connection to which the packet belongs, and the 
sequence number is provided as a courtesy. 

TCP’s response to this notice is to disable congestion 
control mechanisms until the route has been restored. 
This involves two different issues: what specific actions 
TCP takes in response to the ELFN notice, and how it 
determines when the route has been restored. 

We used the following simple protocol. When a TCP 
sender receives an ELFN, it disables its retransmission 
timers and enters a “stand-by” mode. While on stand- 
by, a packet is sent at periodic intervals to probe the 
network to see if a route has been established. If an ac- 
knowledgment is received, then it leaves stand-by mode, 
restores its retransmission timers, and continues as nor- 
mal. For this study, we elected to use packet probing 
instead of an explicit notice to signal that a route has 
been re-established. 
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To see what could be achieved with this protocol, 
we studied variations in the parameters and actions and 
measured their effects on performance. In particular, we 
looked at the following: 

Variations in the length of the interval between 
probe packets. 

Modifications to the retransmission timeout value 
(RTO) and congestion window upon restoration of 
the route. 

Different choices of what packet to send as a probe. 

The results of these studies are presented below. Each 
curve is based on the mean throughput for the 50 dif- 
ferent mobility patterns we used earlier. 

Figure 8 is the analogue of Figure 3, except that the 
results in Figure 8 are based on simulations in which 
TCP-Reno was modified to use ELFN (with a 2s probe 
interval). Clearly, the use of ELFN has improved the 
throughput for each of the speeds, as evidenced by the 
closer proximity of the measured pattern throughputs to 
the expected throughput line. The tighter clustering of 
the points also suggests that the use of ELFN techniques 
improves throughput across all patterns, rather than 
dramatically increasing just a few. 
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Figure 9: Performance comparison between basic TCP- 
Reno and TCP-Reno w/ ELFN using varying probe in- 
tervals. 

Figure 9 shows the measured throughput as a per- 
centage of the expected throughput for various probe 
intervals. Based on these results, it is apparent that 
the throughput is critically dependent on the time be- 
tween probe packets. This dependency exists because 
increasing the time between probes delays the discov- 
ery of new routes by the length of the interval. Thus, 
it is no surprise that if the probe interval is too large, 
then the throughput will degrade below that of stan- 
dard TCP, as shown by the results for probe intervals 
of 30s. Intuitively, if the probe interval is too small, 
then the rapid injection of probes into the network will 
cause congestion and lower throughput. Thus, instead 
of a fixed interval, perhaps choosing an interval that is 
a function of the RTT could be a more judicious choice. 
However, based on the sensitivity of the throughput to 
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Figure 10: Performance comparison of different window 
and RTO modifications in response to ELFN. 

the interval size, the function must be chosen very care- 
fully. 

In addition to varying the probe intervals, we also 
looked at the performance advantages of adjusting the 
congestion window and/or retransmission timeout (RTO) 
after the failed route had been restored. These results 
are shown in Figure 10. In the figure, ELFN represents 
the case where no changes are made to TCP’s state be- 
cause of ELFN. Thus, TCP’s state (congestion window, 
RTO, etc.) are the same after the route is restored, as 
it was when the ELFN was first received. W/EL FN 
represents the case where the congestion window is set 
to one packet after the route has been restored, and 
RTO/W/ELFN represents the case where the RTO is 
set to the default initial value (6s in these simulations) 
and the window is set to one after the route is restored. 
Adjusting the window seemed to have little impact on 
the results. This is believed to be due to the fact that 
the optimal window (the bandwidth/delay product) of 
the simulated network is a relatively small number of 
packets, so it takes only a few round trips to ramp up 
to the optimal window after a failure. However, altering 
the RTO had a more significant impact on throughput. 
We suspect that this is due to a combination of factors, 
but is most probably caused by the frequency at which 
routes break, coupled with ARP’s proclivity, as imple- 
mented, to silently drop packets. Thus, if a restored 
route immediately breaks again and results in a failed 
ARP lookup, then the sender will likely timeout. Given 
the length of the timeout, it does not take many of such 
occurrences to dramatically affect performance. 

Finally, we took a brief look at the impact that 
the choice of probe packet had on performance, which 
is shown in Figure 11. We considered two possibil- 
ities: always send the first packet in the congestion 
window (First/ELFN in the figure), or retransmit the 
packet with the lowest sequence number among those 
signaled as lost in the ELFNs that were received (Low- 
est Rcvd/ELFN). The first approach is intuitive, the 
second approach was chosen with the optimistic think- 
ing that perhaps some packets in the window did get 
through, and, if the route is restored quickly, then the 
next packet in sequence will be in flight. However, as 
shown by the results, this had almost no impact whatso- 
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Figure 11: Performance comparison between basic 
TCP-Reno and TCP-Reno w/ ELFN using different 
choices for the probe packet. 

ever. We suspect that this has to do with the fact that 
routes, once broken, were rarely restored quickly. In ad- 
dition, as shown in Section 5, the presence of different 
forward and reverse routes equalizes the two approaches 
when only the forward link breaks, since those packets 
that did get through before the break are acknowledged 
via the reverse channel. Thus, the lowest sequence num- 
ber of the packets lost would also happen to be the first 
in the window. 

7 Related Work 

Because routing is an important problem in mobile ad 
hoc networks, researchers have explored several routing 
protocols for this environment (e.g., [19, 10, 11, 16, 18, 
20, 21, 22, 231). 

Recently, some researchers have considered the per- 
formance of TCP on multi-hop networks [15, 81. Gerla 
et al. [15] investigated the impact of the MAC protocol 
on performance of TCP on multi-hop networks. Chan- 
dran et al. [8] proposed the TCP-Feedback (TCP-F) 
protocol, which uses explicit feedback in the form of 
route failure and re-establishment control packets. Per- 
formance measurements were based on a simple one- 
hop network, in which the link between the sender and 
receiver failed/recovered according to an exponential 
model. Also, the routing protocol was not simulated. 

Durst et al. [12] looked at the Space Communica- 
tions Protocol Specifications (SCPS), which are a suite 
of protocols designed by the Consultative Committee 
for Space Data Systems (CCSDS) for satellite commu- 
nications. SCPS-TP handles link failures using explicit 
feedback in the form of SCPS Control Message Protocol 
messages to suspend and resume a TCP sender during 
route failure and recovery. Performance measurements 
focused on link asymmetry and corruption over last-hop 
wireless networks, common in satellite communications. 

8 Conclusions and Future Work 

In this paper, we investigated the effects of mobility on 
TCP performance in mobile ad hoc networks. Through 

simulation, we noted that TCP throughput drops sig- 
nificantly when node movement causes link failures, due 
to TCP’s inability to recognize the difference between 
link failure and congestion. We then made this point 
clearer by presenting several specific examples, one of 
which resulted in zero throughput, the other, in an un- 
expected rise in throughput with an increase in speed. 
We also introduced a new metric, expected throughput, 
which provides a more accurate means of performance 
comparison by accounting for the differences in through- 
put when the number of hops varies. We then used this 
metric to show how the use of explicit link failure noti- 
fication (ELFN) can significantly improve TCP perfor- 
mance, and gave a performance comparison of a variety 
of potential ELFN protocols. In the process, we discov- 
ered some surprising effects that route caching can have 
on TCP performance. 

In the future, we intend to investigate ELFN pro- 
tocols in more detail, as well as the effects that other 
mobile ad hoc routing protocols have on TCP perfor- 
mance. Currently, we are also studying the impact that 
the link-layer has on TCP performance, such as aggre- 
gate delay caused by local retransmissions over multiple 
wireless hops. 
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Figure 12: Performance comparison between base TCP- 
Reno and TCP-Reno with two configurations of ELFN 
when other traffic is present in the network. 

We also intend to continue this study by looking at 
the performance of ELFN in congested networks. Ini- 
tial results, shown in Figure 12, suggest that similar 
performance benefits can be expected in congested net- 
works, as in the uncongested network presented in this 
paper. Figure 12 shows a performance comparison be- 
tween base TCP-Reno, and ELFN with and without 
modifications to the RTO and congestion window, as 
described in Section 6 (both used 4s probes). The addi- 
tional network traffic was provided by ten CBR connec- 
tions between eight other nodes, each sending 512-byte 
packets at a rate of 10 packets/second, with slightly 
staggered start times. 

More research is needed to better understand the 
complex interactions between TCP and lower layer pro- 
tocols when used over mobile ad hoc networks, and to 
find solutions to the problems caused by these inter- 
actions. One such problem that we identified was the 
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interaction between TCP and ARP. The ARP in the ex- 
tensions is based on a BSD implementation, with a one- 
packet queue and no request timeout mechanism. Thus, 
packets were regularly dropped or held indefinitely while 
awaiting resolution. A more advanced ARP needs to be 
employed, such as one that will provide for the queuing 
of multiple packets awaiting resolution, with a timeout 
mechanism to promptly signal failure. Another prob- 
lem we identified was the significant impact that route 
cache management has on TCP performance. The re- 
sults suggest that more aggressive cache management 
protocols are needed to counter the effects of mobility, 
such as the use of adaptive route cache timeouts, nega- 
tive information, or signal strength information. 
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