
Ion Stoica, Robert Morris, David Karger,
M. Frans Kaashoek, Hari Balakrishnan

MIT and Berkeley

presented by Daniel Figueiredo

Chord: A Scalable Peer-to-peer Lookup
Service for Internet Applications

Chord: A Scalable Peer-to-peer Lookup
Service for Internet Applications

o presentation based on slides by Robert Morris (SIGCOMM’01)

OutlineOutline

o Motivation and background

o Consistency caching

o Chord

o Performance evaluation

o Conclusion and discussion

MotivationMotivation

How to find data in a distributed file sharing system?

o Lookup is the key problem

Internet

Publisher
Key=“LetItBe”

Value=MP3 data

Lookup(“LetItBe”)

N1

N2 N3

N5N4
Client ?

Centralized SolutionCentralized Solution

o Requires O(M) state
o Single point of failure

Internet

Publisher
Key=“LetItBe”

Value=MP3 data

Lookup(“LetItBe”)

N1

N2 N3

N5N4
Client

DB

o Central server (Napster)

Distributed Solution (1)Distributed Solution (1)

o Worst case O(N) messages per lookup

Internet

Publisher
Key=“LetItBe”

Value=MP3 data

Lookup(“LetItBe”)

N1

N2 N3

N5N4
Client

o Flooding (Gnutella, Morpheus, etc.)

Distributed Solution (2)Distributed Solution (2)
o Routed messages (Freenet, Tapestry, Chord, CAN, etc.)

Internet

Publisher
Key=“LetItBe”

Value=MP3 data

Lookup(“LetItBe”)

N1

N2 N3

N5N4
Client

o Only exact matches

Routing ChallengesRouting Challenges

o Define a useful key nearness metric

o Keep the hop count small

o Keep the routing tables “right size”

o Stay robust despite rapid changes in membership

Authors claim:
o Chord: emphasizes efficiency and
simplicity

Chord OverviewChord Overview

o Provides peer-to-peer hash lookup service:
o Lookup(key) → IP address

o Chord does not store the data

o How does Chord locate a node?

o How does Chord maintain routing tables?

o How does Chord cope with changes in membership?

Chord propertiesChord properties

o Efficient: O(Log N) messages per lookup

o N is the total number of servers

o Scalable: O(Log N) state per node

o Robust: survives massive changes in membership

o Proofs are in paper / tech report

o Assuming no malicious participants

Chord IDsChord IDs

o m bit identifier space for both keys and nodes

o Key identifier = SHA-1(key)

Key=“LetItBe” ID=60SHA-1

IP=“198.10.10.1” ID=123SHA-1
o Node identifier = SHA-1(IP address)

o Both are uniformly distributed

o How to map key IDs to node IDs?

Consistent Hashing [Karger 97]Consistent Hashing [Karger 97]

o A key is stored at its successor: node with next higher ID

N32

N90

N123 K20

K5

Circular 7-bit
ID space

0IP=“198.10.10.1”

K101

K60
Key=“LetItBe”

Consistent HashingConsistent Hashing
o Every node knows of every other node

o requires global information
o Routing tables are large O(N)
o Lookups are fast O(1)

N32

N90

N123

0

Hash(“LetItBe”) = K60

N10

N55

Where is “LetItBe”?

“N90 has K60”

K60

Chord: Basic LookupChord: Basic Lookup

N32

N90

N123

0

Hash(“LetItBe”) = K60

N10

N55

Where is “LetItBe”?

“N90 has K60”

K60

o Every node knows its successor in the ring

o requires O(N) time

“Finger Tables”“Finger Tables”

o Every node knows m other nodes in the ring

o Increase distance exponentially

N80
80 + 20

N112

N96

N16

80 + 21
80 + 22

80 + 23

80 + 24

80 + 25 80 + 26

“Finger Tables”“Finger Tables”

o Finger i points to successor of n+2i

N120

N80
80 + 20

N112

N96

N16

80 + 21
80 + 22

80 + 23

80 + 24

80 + 25 80 + 26

Lookups are FasterLookups are Faster

o Lookups take O(Log N) hops

N32

N10

N5

N20

N110

N99

N80

N60

Lookup(K19)

K19

Joining the RingJoining the Ring

o Three step process:
o Initialize all fingers of new node

o Update fingers of existing nodes

o Transfer keys from successor to new node

o Less aggressive mechanism (lazy finger update):
o Initialize only the finger to successor node

o Periodically verify immediate successor, predecessor

o Periodically refresh finger table entries

Joining the Ring - Step 1Joining the Ring - Step 1

o Initialize the new node finger table

o Locate any node p in the ring

o Ask node p to lookup fingers of new node N36

o Return results to new node

N36

1. Lookup(37,38,40,… ,100,164)

N60

N40

N5

N20
N99

N80

Joining the Ring - Step 2Joining the Ring - Step 2

o Updating fingers of existing nodes
o new node calls update function on existing nodes

o existing nodes can recursively update fingers of other
nodes

N36

N60

N40

N5

N20
N99

N80

Joining the Ring - Step 3Joining the Ring - Step 3

o Transfer keys from successor node to new node
o only keys in the range are transferred

Copy keys 21..36
from N40 to N36

K30
K38

N36

N60

N40

N5

N20
N99

N80

K30

K38

Handing FailuresHanding Failures
o Failure of nodes might cause incorrect lookup

N120

N113

N102

N80

N85

N10

Lookup(90)

o N80 doesn’t know correct successor, so lookup fails

o Successor fingers are enough for correctness

Handling FailuresHandling Failures

o Use successor list
o Each node knows r immediate successors

o After failure, will know first live successor

o Correct successors guarantee correct lookups

o Guarantee is with some probability

o Can choose r to make probability of lookup failure
arbitrarily small

Evaluation OverviewEvaluation Overview

o Quick lookup in large systems

o Low variation in lookup costs

o Robust despite massive failure

o Experiments confirm theoretical results

Cost of lookupCost of lookup
o Cost is O(Log N) as predicted by theory
o constant is 1/2

Number of Nodes

Av
er

ag
e

M
es

sa
ge

s
pe

r
Lo

ok
up

RobustnessRobustness
o Simulation results: static scenario

o Failed lookup means original node with key failed (no replica of keys)

o Result implies good balance of keys among nodes!

RobustnessRobustness
o Simulation results: dynamic scenario

o Failed lookup means finger path has a failed node

o 500 nodes initially

o average stabilize() call 30s

o 1 lookup per second (Poisson)

o x join/fail per second (Poisson)

Current implementationCurrent implementation

o Chord library: 3,000 lines of C++

o Deployed in small Internet testbed

o Includes:

o Correct concurrent join/fail

o Proximity-based routing for low delay (?)

o Load control for heterogeneous nodes (?)

o Resistance to spoofed node IDs (?)

StrengthsStrengths

o Based on theoretical work (consistent hashing)

o Proven performance in many different aspects
o “with high probability” proofs

o Robust (Is it?)

WeaknessWeakness

o NOT that simple (compared to CAN)

o Member joining is complicated
o aggressive mechanisms requires too many messages and updates

o no analysis of convergence in lazy finger mechanism

o Key management mechanism mixed between layers
o upper layer does insertion and handle node failures

o Chord transfer keys when node joins (no leave mechanism!)

o Routing table grows with # of members in group

o Worst case lookup can be slow

DiscussionsDiscussions

o Network proximity (consider latency?)

o Protocol security
o Malicious data insertion

o Malicious Chord table information

o Keyword search and indexing

o ...

