Core Stateless Fair Queueing
Stoica, Shanker and Zhang - SIGCOMM 98

- Rigorous fair Queueing requires **per flow state**: too costly in high speed core routers
- Yet, some form of **FQ essential** for efficient, fair congestion control in the backbone network
- **Proposed solution:**
 (a) **per flow** accounting and **rate labeling** at **edge routers**
 (b) **packet state**: packets carry **rate labels** (eg, in TOS field)
 (c) **stateless FQ** at core routers: no per flow state kept;
 packet drop probability computed directly from pkt label
Key Elements of CSFQ

• Edge router estimates **current rate** \(r(i) \) of each flow and stamps it in IP header (eg, TOS field)
• Flow **rate value adjusted** as pkt travels through various bottlenecks in the backbone
• Core router **estimates max/min fair share** on its links based on aggregate traffic measurements
• Core router **probabilistically drops** packets in a flow which exceeds fair share
Fair Share Computation at Router

- Assume N flows arrive at core router
- Each flow rate $r(i)$ is stamped in header
- Max-Min fair operation:
 (a) all bottlenecked flows get “fair share” rate “a” (the excess rate packets are dropped)
 (b) non-bottlenecked flows are granted their full rate

Thus, at full trunk utilization:

$$\text{Sum (over } i = 1..N) \text{ of } \min\{ r(i,t), a(t) \} = C$$

where $C = \text{trunk capacity}$
Fair Share Computation (cont)

If all r(i) are known at the router, fair share a can be easily computed:

(a) try an arbitrary fair share threshold a(0)

(b) from “fair share” formula compute the resulting link throughput R

(c) compute new value a(1) = C/R

(d) go back to (b) and iterate until a(n) converges to fixed point
Probabilistic Dropping at Router

- If aggregate arrival rate $A < C$, no pkt is dropped
- If $A > C$ (ie, congested link):
 (a) bottlenecked flow (ie, $r(i,t) > a(t)$): drop the fraction of “bits” above the fair share, ie $(r(i,t) - a(t))/r(i,t)$
 (b) non-bottlenecked flow: no dropping
- Equivalently:
 packet drop probability = max $(0, 1 - a(t)/r(i,t))$

- adjust rate label value: $r(i,t) \leq \min (r(i, t), a(t))$
Implementation details (cont)

(a) **flow arrival rate** at edge router computed with exp avg

(b) **fair share computation at core router:**
 measure aggregate arrival rate $A(t)$ using exp averaging
 If router is congested (ie, $A(t) > C$), then:
 measure (exp avg) the fraction F of bits currently accepted
 ie, $F(t) = \text{current acceptance rate}$
 Assume F is a linear function of a (in reality concave function). Then:
 New fair share value: $a(\text{new}) = a(\text{old}) \frac{C}{F(t)}$
More details..

- Occasionally, router buffer overflows:
 - then, decrease $a(t)$ by 1%
- Never increase $a(t)$ by more than 25%
- Link is considered uncongested if occupancy $< 50\%$ of buffer capacity
- Weighted CSFQ option:
 - if $w(i)$ is the weight of flow i, then:
 - $r(i) \leq r(i)/w(i)$
Simulation Experiments

- **FIFO**
- **RED** (FIFO + Random Early Detection)
- **FRED** (Flow Random Early Drop, SIGCOMM 97): extension of RED to improve fairness; it keeps state of flows which have one or more pkts in queue; it preferentially drops pkts from flows with large queues
- **DRR** (Deficit Round Robin): per flow queueing; drops packets from largest queue
Single Congested Link Experiment

10 Mbps congested link shared by N flows

(a) 32 UDP flows with linearly increasing rates

(b) single “ill behaved” UDP flow; 31 TCP flows

(c) single TCP flow; 31 “ill behaved” UDP flows
Edge and Core Routers
(a) linear rate UDPs; (b) single UDP + 31 TCPs
Single TCP competing with up to 31 UDPs
Multiple congested links
Coexistence of TCP and Receiver Layered Multicast: DRR
Coexistence of TCP and Receiver Layered Multicast: CSFQ
Coexistence of TCP and Receiver Layered Multicast: RED

(d) RED
Conclusions

• CSFQ does not require per flow state within the core
• CSFQ performance comparable to DRR (which however requires per flow state)
• superior to FRED (“partial” per flow state)
• much better than RED, FIFO (no per flow state)
• large latency and propagation delay effects (such as on a cross country connection or on a satellite segment) still to be explored
• use of TOS field (i.e., packet state) potentially controversial