General Packet Radio System (GPRS)

Overview

Introduction

- General Packet Radio Service (GRPS) today
 - ► "Packet overlay" network on top of the existing GSM (Digital) circuit switched voice-based network
 - ► TCP/IP-based: allows data packets to be conveyed across the mobile network using packet switching
 - "Always on" / "always connected"
 - After initial "log-on", user is permanently connected to IP services
 - Instant access, no further log-on
 - Flat rate (about \$30/mo in the LA area)
 - User perceived performance: fluctuates (as GPRS users defer to voice users) to a max of 50Kbps
 - Network resources only used when information ready to be exchanged – bandwidth on demand ...
 - More efficient utilization of air-time

GSM - GPRS

- Provides high speed packet data access
- uses modified GSM hardware (different phones/cards)
- Several time slots can be (dynamically) allocated to transmit a block of data

GSM/GPRS Architecture, simplified

Uplink/downlink

- The uplink channel is shared by a number of mobiles, and its use is allocated by a BSC (Base Station Controller)
 - ► The MS (Mobile Station) requests use of the channel in a "packet random access message".
 - ► The BSC allocates an unused channel to the mobile and sends a "packet access grant message" in reply
- The downlink is fully controlled by the serving BSC and random access is not needed

GPRS Mobility Tunnelling

Supporting Nodes – main functions

- 2G/3G SGSN (serving node)
 - Authentication/Authorization towards HLR
 - Admission control
 - Charging (billing)
 - Encapsulation/tunneling
 - Mobility Management
 - Ciphering
 - Compression

- GGSN (gateway node)
 - Screening (filtering)
 - Charging
 - Encapsulation/Tunneling
 - Mobility Management
 - Connections to external IP networks
 - · Corporate networks
 - Internets
 - Services (WAP etc)

GPRS/GSM Protocols - Overview

Routing in GPRS

Mobile Address Allocation

- GGSN Address Pools
 - Static, dynamic allocation at GPRS packet data activation
- HLR
 - ► The HLR may keep a static IP address that is fetched by the SGSN at GPRS attach
- RADIUS
 - The GGSN may interact with an external AAA server in order to perform AAA functions as well as dynamic IP address allocation at GPRS packet data activation
- DHCP server
 - ► The GGSN may interact with an external DHCP server to perform dynamic IP address allocation at GPRS packet data activation
- IPv6 auto configuration

GPRS initial State

GPRS Attach

- When a MS is turned on, the first function it performs is a GPRS attach
 - ► GSM access authentication (towards Home Network, HLR (Authentication Center))
 - User profile is downloaded from HLR to the serving SGSN
- When the GPRS *attach* is complete, the MS is physically connected to the visited network

The Packet Data Protocol (PDP) Context

- In order to be able to send and receive data, the mobile must set-up a packet data bearer
 - ► The PDP bearer is associated with contexts in each nodes that data are traversing
- The bearer is set-up via "PDP context activation" procedures
- PDP context describes requirements of the connection to the packet networks: Type, network address, Access Point Name (APN), QoS, etc.
 - ► SGSN validates request against subscription information downloaded from HLR during GPRS Attach
 - ► Access point name sent to DNS, IP address(s) of suitable GGSNs returned
 - ► Logical connection using GPRS tunnels (GTP) between SGSN and GGSN
 - ▶ IP address allocated (GGSN pool, DHCP, RADIUS)

PDP Context Activation

