Enhancing TCP Fairness in Ad Hoc Wireless Networks Using Neighborhood RED

Kaixin Xu, Mario Gerla
University of California, Los Angeles
{xkx, gerla}@cs.ucla.edu

Lantao Qi, Yantai Shu
Tianjin University, Tianjin, China
{ltqi, ytshu}@tju.edu.cn

*This work was supported in part by Office of Naval Research (ONR) "MINUTEMAN" project under contract N00014-01-C-0016 and TRW under a Graduate Student Fellowship

*This research was supported in part by the National Natural Science Foundation of China (NSFC) under grant No. 90104015.
Motivation

- TCP is important in ad hoc network applications
 - Reliable transfer of data/image files and multimedia streaming
 - Congestion protection
 - Efficient utilization and fair share of the resources
- However, TCP has shown unfair behavior in ad hoc nets
TCP Unfairness in Ad Hoc Networks

- Fairness index in wireless networks
 - Weighted MaxMin Fairness Index
 - Weight(i) = # of flows that compete with flow i (including itself)
 - \[F(X,t) = \frac{\sum_{i=1}^{n} w_i(t)X_i(t)}{n \left[\sum_{i=1}^{n} (W_i(t)X_i(t)) \right]^2} \]

- Simulation in QualNet simulator
 - 3 TCP flows contending with each other
 - Weight of 3 flows, 2:3:2
Significant TCP Unfairness

- Three flow example
- Flow 2 is nearly starved
- Original RED fails to improve the fairness
- Weighted Fairness Index = 0.67
Why RED Does Not Work?

- Random Early Detection (RED)
 - Active queue management scheme
 - Average queue size: $avg = (1 - w_q) * avg + w_q * q$
 - Drop probability: $p_b = \frac{\max_p(avg - \min_{th})}{\max_{th} - \min_{th}}$, proportional to buffer occupancy

- Why RED does not work in ad hoc networks?
 - Congestion simultaneously affects multiple queues
 - Queue at a single node cannot completely reflect the state

- Extend RED to the entire congested area - Neighborhood of the node
Neighborhood and Its Distributed Queue

- A node’s neighborhood consists of the node itself and the nodes which can interfere with this node’s signal
 - 1-hop neighbors directly interfere
 - 2-hop neighbors may interfere

- Queue size of the neighborhood reflects the degree of local network congestion
Simplified Neighborhood Queue Model

- 2-hop neighborhood queue model is not easy to operate
 - Too much overhead to propagate queue values 2 hops away

- Simplified model
 - Only include 1-hop neighbors
 - Two queues at each neighbor:
 - Outgoing queue
 - “Incoming queue” = # CTS packets overheard by A

- Distributed neighborhood queue – the aggregate of these local queues
Characteristics of Neighborhood Queue

- Consists of multiple queues located at the neighboring nodes
- Not a FIFO queue due to location dependency
- Transmission order of sub-queues may change dynamically due to
 - Topology changes
 - Traffic pattern changes
- TCP flows sharing the same neighborhood may get different feedbacks in terms of packet delay and loss rate
Neighborhood Random Early Detection (NRED)

- Extending RED to the distributed neighborhood queue
- Key Problems
 - Counting the size of the distributed neighborhood queue
 - Calculating proper packet drop probability at each node
- Components of Neighborhood RED
 - Neighborhood Congestion Detection (NCD)
 - Neighborhood Congestion Notification (NCN)
 - Distributed Neighborhood Packet Drop (DNPD)
Neighborhood Congestion Detection

- Direct way: Announce queue size upon changes
 - Too much overhead, exacerbates congestion
- Our method: Indirectly estimate an index of instant queue size by monitoring wireless channel
 - Channel utilization ratio \(U_{busy} = \frac{\text{channel-busy-time}}{\text{sampling-interval}} \)
 - Queue size index \(q = K * U_{busy} \), \(K \) is a constant

- Average queue size is calculated using RED’s alg.
- Congestion: queue size exceeds the minimal threshold
Neighborhood Congestion Notification & Distributed Neighborhood Packet Drop

- Neighborhood Congestion Notification
 - Congested node computes drop probability following RED’s alg.
 - It broadcasts the drop probability to all neighbors

- Distributed Neighborhood Packet Drop
 - Neighborhood Drop Prob = Max of all drop probabilities heard from neighbors
Verification of Queue Size Estimation

- Estimating Node5’s neighborhood queue size index
- Get real queue size by recording queue size at all nodes

![Graphs showing FTP and HTTP traffic with estimated and real queue sizes](image)
Parameter Tuning: Scenarios

- QualNet simulator
- Basic but typical scenarios
 - Hidden terminal situations
 - Exposed terminal situations
- Configuration parameters
 - Minimum threshold & Maximum threshold
 - Set to 100 and 240 based on previous experiment
 - Vary the maximum packet drop probability (max_p)

Hidden Terminal

Exposed Terminal

<table>
<thead>
<tr>
<th>FTP 1</th>
<th>FTP 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>(100, 0)</td>
<td>(100, 700)</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>(100, 350)</td>
<td>(100, 1050)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FTP 1</th>
<th>FTP 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>(100, 0)</td>
<td>(100, 700)</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>(100, 350)</td>
<td>(100, 1050)</td>
</tr>
</tbody>
</table>
Parameter Tuning: Hidden Terminal Scenario

- Weighted fairness index
- Instantaneous throughput: $X(t) = \frac{D_t}{\Delta_t}$, here Δ_t denotes the data successfully received during time period $[t \rightarrow t + \Delta_t]$
Parameter Tuning: Exposed Terminal Scenario

Fairness index

Aggregated throughput

Instant throughput

W/ max_p = 0.14
Performance Evaluation: Simple Scenario

- Both long-term and short-term fairness is achieved
- Loss of aggregated throughput
 - Tradeoff between fairness and throughput
 - Channel is not fully utilized
Performance Evaluation: Multiple Congested Neighborhood

- Multiple congested neighborhoods
- FTP2 & FTP 5 have more competing flows, are more likely to be starved
Performance Evaluation: Mobility

- Node 5 moves up and down
 - Moving Up: two flows interfere with each other
 - Moving down: No much interference
- NRED can adapt to mobility
Performance Evaluation: Realistic Scenario

- 50 nodes randomly deployed in 1000mX1000m field
- 5 FTP/TCP connections are randomly selected
- AODV routing
- No mobility
Conclusions

- Significant TCP unfairness has been found and reported in ad hoc networks

- NRED is a network layer solution
 - Easy to implement
 - Incremental deployment

- Major Contributions
 - Model of neighborhood queue
 - Distributed neighborhood queue
 - Not FIFO, different and dynamic priorities
 - Network layer solution for enhancing TCP fairness in ad hoc networks
Thanks!