148

Chapter 12

12.11

12.12

Indexing and Hashing

implementation may be by linking together fixed size buckets using overflow
chains. Deletion is difficult with open hashing as all the buckets may have to
inspected before we can ascertain that a key value has been deleted, whereas
in closed hashing only that bucket whose address is obtained by hashing the
key value need be inspected. Deletions are more common in databases and
hence closed hashing is more appropriate for them. For a small, static set of
data lookups may be more efficient using open hashing. The symbol table of a
compiler would be a good example.

What are the causes of bucket overflow in a hash file organization? What can
be done to reduce the occurrence of bucket overflows?
Answer: The causes of bucket overflow are :-

a. Our estimate of the number of records that the relation will have was too
low, and hence the number of buckets allotted was not sufficient.

b. Skew in the distribution of records to buckets. This may happen either be-
cause there are many records with the same search key value, or because
the the hash function chosen did not have the desirable properties of uni-
formity and randomness.

To reduce the occurrence of overflows, we can :-

a. Choose the hash function more carefully, and make better estimates of the
relation size.

b. If the estimated size of the relation is n,, and number of records per block is
fr, allocate (n,./ f,) * (1 + d) buckets instead of (n,./ f,.) buckets. Here d is a
fudge factor, typically around 0.2. Some space is wasted: About 20 percent
of the space in the buckets will be empty. But the benefit is that some of the
skew is handled and the probability of overflow is reduced.

Suppose that we are using extendable hashing on a file that contains records
with the following search-key values:

2,3,5,7,11,17,19, 23,29, 31

Show the extendable hash structure for this file if the hash functionis h(z) = =
mod 8 and buckets can hold three records.
Answer:

Exercises 149

17

3] 3]
000 2
001 /
010] 3]
011 - 131
100 ~ 19
101 \\]
110 \\ .
111 ~

12.13 Show how the extendable hash structure of Exercise 12.12 changes as the result
of each of the following steps:

a. Delete 11.
b. Delete 31.
c. Insert 1.

d. Insert 15.

Answer:
a. Delete 11: From the answer to Exercise 12.12, change the third bucket to:

3]
3

19

At this stage, it is possible to coalesce the second and third buckets. Then it
is enough if the bucket address table has just four entries instead of eight.
For the purpose of this answer, we do not do the coalescing.

b. Delete 31: From the answer to 12.12, change the last bucket to:

150 Chapter 12 Indexing and Hashing

2]
7

23

c. Insert 1: From the answer to 12.12, change the first bucket to:
2|
1

17

d. Insert 15: From the answer to 12.12, change the last bucket to:
2 |
7

15
23

12.14 Give pseudocode for deletion of entries from an extendable hash structure,
including details of when and how to coalesce buckets. Do not bother about
reducing the size of the bucket address table.

Answer: Let ¢ denote the number of bits of the hash value used in the hash
table. Let BSIZE denote the maximum capacity of each bucket.

12.15

Exercises 151

delete(value K;)

begin
Jj = first ¢ high-order bits of h(K;);
delete value K; from bucket j;
coalesce(bucket 7);

end

coalesce(bucket j)
begin
i; = bits used in bucket j;
k = any bucket with first (i; — 1) bits same as that
of bucket j while the bit i; is reversed;
13, = bits used in bucket k;
i£(i; # ix)
return; /* buckets cannot be merged */
if(entries in j + entries in k£ > BSIZE)
return; /* buckets cannot be merged */
move entries of bucket & into bucket j;

decrease the value of i; by 1;
make all the bucket-address-table entries,
which pointed to bucket &, point to j;

coalesce(bucket 7);
end

Note that we can only merge two buckets at a time. The common hash prefix
of the resultant bucket will have length one less than the two buckets merged.
Hence we look at the buddy bucket of bucket j differing from it only at the last
bit. If the common hash prefix of this bucket is not i, then this implies that the
buddy bucket has been further split and merge is not possible.

When merge is successful, further merging may be possible, which is han-
dled by a recursive call to coalesce at the end of the function.

Suggest an efficient way to test if the bucket address table in extendable hash-
ing can be reduced in size, by storing an extra count with the bucket address
table. Give details of how the count should be maintained when buckets are
split, coalesced or deleted.

(Note: Reducing the size of the bucket address table is an expensive oper-
ation, and subsequent inserts may cause the table to grow again. Therefore, it
is best not to reduce the size as soon as it is possible to do so, but instead do
it only if the number of index entries becomes small compared to the bucket
address table size.)

Answer: If the hash table is currently using ¢ bits of the hash value, then main-
tain a count of buckets for which the length of common hash prefix is exactly
i.

152

Chapter 12

12.16

12.17

12.18

Indexing and Hashing

Consider a bucket j with length of common hash prefix i;. If the bucket is
being split, and 4; is equal to i, then reset the count to 1. If the bucket is being
split and ¢; is one less that ¢, then increase the count by 1. It the bucket if being
coalesced, and ¢; is equal to ¢ then decrease the count by 1. If the count becomes
0, then the bucket address table can be reduced in size at that point.

However, note that if the bucket address table is not reduced at that point,
then the count has no significance afterwards. If we want to postpone the re-
duction, we have to keep an array of counts, i.e. a count for each value of com-
mon hash prefix. The array has to be updated in a similar fashion. The bucket
address table can be reduced if the i*" entry of the array is 0, where i is the
number of bits the table is using. Since bucket table reduction is an expensive
operation, it is not always advisable to reduce the table. It should be reduced
only when sufficient number of entries at the end of count array become 0.

Why is a hash structure not the best choice for a search key on which range
queries are likely?

Answer: A range query cannot be answered efficiently using a hash index,
we will have to read all the buckets. This is because key values in the range do
not occupy consecutive locations in the buckets, they are distributed uniformly
and randomly throughout all the buckets.

Consider a grid file in which we wish to avoid overflow buckets for perfor-
mance reasons. In cases where an overflow bucket would be needed, we in-
stead reorganize the grid file. Present an algorithm for such a reorganization.
Answer: Let us consider a two-dimensional grid array. When a bucket over-
flows, we can split the ranges corresponding to that row and column into two,
in both the linear scales. Thus the linear scales will get one additional entry
each, and the bucket is split into four buckets. The ranges should be split in
such a way as to ensure that the four resultant buckets have nearly the same
number of values.

There can be several other heuristics for deciding how to reorganize the
ranges, and hence the linear scales and grid array.

Consider the account relation shown in Figure 12.25.

a. Construct a bitmap index on the attributes branch-name and balance, divid-
ing balance values into 4 ranges: below 250, 250 to below 500, 500 to below
750, and 750 and above.

b. Consider a query that requests all accounts in Downtown with a balance of
500 or more. Outline the steps in answering the query, and show the final
and intermediate bitmaps constructed to answer the query.

Answer: We reproduce the account relation of Figure 12.25 below.

