
1

Database System Concepts, 5th Ed.
©Silberschatz, Korth and Sudarshan

See www.db-book.com for conditions on re-use 

Chapter 22: Distributed DatabasesChapter 22: Distributed Databases

©Silberschatz, Korth and Sudarshan22.2Database System Concepts - 5th Edition, Aug 22,  2005.

Chapter 22: Distributed DatabasesChapter 22: Distributed Databases

 Heterogeneous and Homogeneous Databases
 Distributed Data Storage
 Distributed Transactions
 Commit Protocols
 Concurrency Control in Distributed Databases
 Availability
 Distributed Query Processing
 Heterogeneous Distributed Databases
 Directory Systems



2

©Silberschatz, Korth and Sudarshan22.3Database System Concepts - 5th Edition, Aug 22,  2005.

Distributed Database SystemDistributed Database System

 A distributed database system consists of loosely coupled sites that share 
no physical component

 Database systems that run on each site are independent of each other
 Transactions may access data at one or more sites

©Silberschatz, Korth and Sudarshan22.4Database System Concepts - 5th Edition, Aug 22,  2005.

Homogeneous Distributed DatabasesHomogeneous Distributed Databases

 In a homogeneous distributed database
 All sites have compatible software 
 Are aware of each other and agree to cooperate in processing user 

requests.
 Each site surrenders part of its autonomy in terms of right to change 

schemas or software
 Appears to user as a single system

 In a heterogeneous distributed database
 Different sites may use different schemas and software

Difference in schema is a major problem—schema mapping for 
query processing

Difference in software is a major problem for transaction 
processing

 Sites may not be aware of each other and may provide only 
limited facilities for cooperation in transaction processing



3

©Silberschatz, Korth and Sudarshan22.5Database System Concepts - 5th Edition, Aug 22,  2005.

Heterogeneous Distributed DatabasesHeterogeneous Distributed Databases

 Many database applications require data from a variety of preexisting 
databases located in a heterogeneous collection of hardware and 
software platforms

 A middleware system is a software layer on top of existing database 
systems, which is designed to manipulate information in 
heterogeneous databases
 Creates an illusion of logical database integration without any 

physical database integration
 Schema translation

 Write a wrapper for each data source to translate to the global 
schema

 Wrappers must translate queries on global schema to on different
local schemas and then convert and  assemble local answers into 
a global one

©Silberschatz, Korth and Sudarshan22.6Database System Concepts - 5th Edition, Aug 22,  2005.

Homogeneous Distributed Data StorageHomogeneous Distributed Data Storage

 Assume relational data model and every site can refer to global 
schema

 Replication
 System maintains multiple copies of data, stored in different sites, 

for faster retrieval and fault tolerance.
 Fragmentation

 Relation is partitioned into several fragments stored in distinct sites
 Replication and fragmentation can be combined

 Relation is partitioned into several fragments: system maintains
several identical replicas of each such fragment.



4

©Silberschatz, Korth and Sudarshan22.7Database System Concepts - 5th Edition, Aug 22,  2005.

Data ReplicationData Replication

 A relation or fragment of a relation is replicated if it is stored 
redundantly in two or more sites.

 Full replication of a relation is the case where the relation is stored at all 
sites.

 Fully redundant databases are those in which every site contains a 
copy of the entire database.

©Silberschatz, Korth and Sudarshan22.8Database System Concepts - 5th Edition, Aug 22,  2005.

Data Replication (Cont.)Data Replication (Cont.)

 Advantages of Replication
 Availability: failure of site containing relation r does not result in 

unavailability of r is replicas exist.
 Parallelism: queries on r may be processed by several nodes in parallel.
 Reduced data transfer: relation r is available locally at each site 

containing a replica of r.
 Disadvantages of Replication

 Increased cost of updates: each replica of relation r must be updated.

 Increased complexity of concurrency control: concurrent updates to 
distinct replicas may lead to inconsistent data unless special 
concurrency control mechanisms are implemented.
One solution: choose one copy as primary copy and apply 

concurrency control operations on primary copy



5

©Silberschatz, Korth and Sudarshan22.9Database System Concepts - 5th Edition, Aug 22,  2005.

Data FragmentationData Fragmentation

 Division of relation r into fragments r1, r2, …, rn which contain sufficient 
information to reconstruct relation r.

 Horizontal fragmentation: each tuple of r is assigned to one or more 
fragments

 Vertical fragmentation: the schema for relation r is split into several 
smaller schemas
 All schemas must contain a common candidate key (or superkey) to

ensure lossless join property.
 A special attribute, the tuple-id attribute may be added to each 

schema to serve as a candidate key.
 Example : relation account  with following schema
 Account = (branch_name, account_number, balance )

©Silberschatz, Korth and Sudarshan22.10Database System Concepts - 5th Edition, Aug 22,  2005.

Horizontal Fragmentation of Horizontal Fragmentation of accountaccount RelationRelation

branch_name account_number balance

Hillside
Hillside
Hillside

A-305
A-226
A-155

500
336
62

account1 = branch_name=“Hillside” (account )

branch_name account_number balance

Valleyview
Valleyview
Valleyview
Valleyview

A-177
A-402
A-408
A-639

205
10000
1123
750

account2 = branch_name=“Valleyview” (account )



6

©Silberschatz, Korth and Sudarshan22.11Database System Concepts - 5th Edition, Aug 22,  2005.

Vertical Fragmentation of Vertical Fragmentation of employee_infoemployee_info RelationRelation

branch_name customer_name tuple_id

Hillside
Hillside
Valleyview
Valleyview
Hillside
Valleyview
Valleyview

Lowman
Camp
Camp
Kahn
Kahn
Kahn
Green

deposit1 = branch_name, customer_name, tuple_id (employee_info )

1
2
3
4
5
6
7

account_number balance tuple_id

500
336
205
10000
62
1123
750

1
2
3
4
5
6
7

A-305
A-226
A-177
A-402
A-155
A-408
A-639

deposit2 = account_number, balance, tuple_id (employee_info )

©Silberschatz, Korth and Sudarshan22.12Database System Concepts - 5th Edition, Aug 22,  2005.

Data TransparencyData Transparency

 Data transparency: Degree to which system user may remain unaware 
of the details of how and where the data items are stored in a distributed 
system

 Consider transparency issues in relation to:
 Fragmentation transparency
 Replication transparency
 Location transparency



7

©Silberschatz, Korth and Sudarshan22.13Database System Concepts - 5th Edition, Aug 22,  2005.

Advantages of FragmentationAdvantages of Fragmentation

 Horizontal:
 allows parallel processing on fragments of a relation
 allows a relation to be split so that tuples are located where they are 

most frequently accessed
 Vertical: 

 allows tuples to be split so that each part of the tuple is stored where 
it is most frequently accessed

 tuple-id attribute allows efficient joining of vertical fragments
 allows parallel processing on a relation

 Vertical and horizontal fragmentation can be mixed.
 Fragments may be successively fragmented to an arbitrary depth.

©Silberschatz, Korth and Sudarshan22.14Database System Concepts - 5th Edition, Aug 22,  2005.

Distributed Query ProcessingDistributed Query Processing

 For centralized systems, the primary criterion for measuring the cost 
of a particular strategy is the number of disk accesses.

 In a distributed system, other issues must be taken into account:
 The cost of a data transmission over the network.
 The potential gain in performance from having several sites 

process parts of the query in parallel.



8

©Silberschatz, Korth and Sudarshan22.15Database System Concepts - 5th Edition, Aug 22,  2005.

Simple Join ProcessingSimple Join Processing

 Consider the following relational algebra expression in which the three 
relations are neither replicated nor fragmented
account depositor branch

 account is stored at site S1

 depositor at S2

 branch at S3

 For a query issued at site SI, the system needs to produce the result at 
site SI 

©Silberschatz, Korth and Sudarshan22.16Database System Concepts - 5th Edition, Aug 22,  2005.

Semijoin StrategySemijoin Strategy

 Let r1 be a relation with schema R1 stores at site S1

Let r2 be a relation with schema R2 stores at site S2

 To evaluate the expression r1       r2 and obtain the result at S1 do:
1. Compute temp1  R1  R2 (r1) at S1.
2. Ship  temp1 from S1 to S2.
3. Compute temp2  r2 temp1 at S2

4. Ship temp2 from S2 to S1.
5. Compute r1 temp2 at S1. This is the same as r1 r2. 



9

©Silberschatz, Korth and Sudarshan22.17Database System Concepts - 5th Edition, Aug 22,  2005.

Join Strategies that Exploit ParallelismJoin Strategies that Exploit Parallelism

 Consider r1 r2 r3 r4 where relation ri is stored at site Si. The result 

must be presented at site S1.

 r1 is shipped to S2 and r1 r2 is computed at S2: simultaneously r3 is 
shipped to S4 and r3 r4 is computed at S4

 S2 ships tuples of (r1 r2) to S1 as they produced; 
S4 ships tuples of (r3 r4) to S1

 Once tuples of (r1 r2) and (r3 r4) arrive at S1 (r1 r2)      (r3 r4) is 
computed in parallel with the computation of (r1 r2) at S2 and the 
computation of (r3 r4) at S4.  

©Silberschatz, Korth and Sudarshan22.18Database System Concepts - 5th Edition, Aug 22,  2005.

Distributed TransactionsDistributed Transactions

 Transaction may access data at several sites.
 Each site has a local transaction manager responsible for:

 Maintaining a log for recovery purposes
 Participating in coordinating the concurrent execution of the 

transactions executing at that site.
 Each site has a transaction coordinator, which is responsible for:

 Starting the execution of transactions that originate at the site.
 Distributing subtransactions at appropriate sites for execution.
 Coordinating the termination of each transaction that originates at 

the site, which may result in the transaction being committed at all 
sites or aborted at all sites.



10

©Silberschatz, Korth and Sudarshan22.19Database System Concepts - 5th Edition, Aug 22,  2005.

System Failure ModesSystem Failure Modes

 Failures unique to distributed systems:
 Failure of a site.
 Loss of messages

Handled by network transmission control protocols such as 
TCP-IP

 Failure of a communication link
Handled by network protocols, by routing messages via 

alternative links
 Network partition

 A network is said to be partitioned when it has been split into 
two or more subsystems that lack any connection between 
them
– Note: a subsystem may consist of a single node 

 Network partitioning and site failures are generally indistinguishable.

©Silberschatz, Korth and Sudarshan22.20Database System Concepts - 5th Edition, Aug 22,  2005.

Concurrency ControlConcurrency Control

 Modify concurrency control schemes for use in distributed environment.
 We assume that each site participates in the execution of a commit 

protocol to ensure global transaction automicity.
 We assume all replicas of any item are updated 

 Will see how to relax this in case of site failures later



11

©Silberschatz, Korth and Sudarshan22.21Database System Concepts - 5th Edition, Aug 22,  2005.

SingleSingle--LockLock--Manager ApproachManager Approach

 System maintains a single lock manager that resides in a single
chosen site, say Si

 When a transaction needs to lock a data item, it sends a lock request 
to Si and lock manager determines whether the lock can be granted 
immediately
 If yes, lock manager sends a message to the site which initiated

the request
 If no, request is delayed until it can be granted, at which time a 

message is sent to the initiating site

©Silberschatz, Korth and Sudarshan22.22Database System Concepts - 5th Edition, Aug 22,  2005.

SingleSingle--LockLock--Manager Approach (Cont.)Manager Approach (Cont.)

 The transaction can read the data item from any one of the sites at 
which a replica of the data item resides.

 Writes must be performed on all replicas of a data item
 Advantages of scheme:

 Simple implementation
 Simple deadlock handling

 Disadvantages of scheme are:
 Bottleneck: lock manager site becomes a bottleneck
 Vulnerability: system is vulnerable to lock manager site failure.



12

©Silberschatz, Korth and Sudarshan22.23Database System Concepts - 5th Edition, Aug 22,  2005.

Distributed Lock ManagerDistributed Lock Manager

 In this approach, functionality of locking is implemented by lock 
managers at each site
 Lock managers control access to local data items

 But special protocols may be used for replicas
 Advantage: work is distributed and can be made robust to failures
 Disadvantage:  deadlock detection is more complicated

 Lock managers cooperate for deadlock detection
More on this later

 Several variants of this approach
 Primary copy
 Majority protocol
 Biased protocol
 Quorum consensus

©Silberschatz, Korth and Sudarshan22.24Database System Concepts - 5th Edition, Aug 22,  2005.

Primary CopyPrimary Copy

 Choose one replica of data item to be the primary copy. 
 Site containing the replica is called  the primary site for that data 

item
 Different data items can have different primary sites

 When a transaction needs to lock a data item Q, it requests a lock at 
the primary site of Q.
 Implicitly gets lock on all replicas of the data item

 Benefit
 Concurrency control for replicated data handled similarly to 

unreplicated data - simple implementation.
 Drawback

 If the primary site of  Q fails, Q is inaccessible even though other  
sites containing a replica may be accessible.



13

©Silberschatz, Korth and Sudarshan22.25Database System Concepts - 5th Edition, Aug 22,  2005.

TimestampTimestamp--based Protocolsbased Protocols

 Timestamp based concurrency-control protocols can be used in 
distributed systems

 Each transaction must be given a unique timestamp
 Main problem:  how to generate a timestamp in a distributed fashion

 Each site generates a unique local timestamp using either a logical 
counter or the local clock.

 Global unique timestamp is obtained by concatenating the unique 
local timestamp with the unique identifier.

©Silberschatz, Korth and Sudarshan22.26Database System Concepts - 5th Edition, Aug 22,  2005.

Finite State Diagram of Commit Protocol for Finite State Diagram of Commit Protocol for 
Coordinator and CohortCoordinator and Cohort

Q: Query state,      W: Wait state,         A: Abort state,     C: Commit



14

©Silberschatz, Korth and Sudarshan22.27Database System Concepts - 5th Edition, Aug 22,  2005.

The COORDINATOR:

Q1. The COORDINATOR sends the message to each COHORT. The 
COORDINATOR is now in the preparing transaction state.

W1. Now the COORDINATOR waits for responses from each of the 
COHORTS 
 If any COHORT responds ABORT then the transaction must 

be aborted,
 After all COHORTS respond AGREED then the transaction is 

commited.
 If after some time period all COHORTS do not respond the 

COORDINATOR can send a COMMIT-REQUEST messages to 
the COHORTS that have not responded, or it can either 
transmit ABORT messages (and eventually it will do so if it 
does not get any answer)

©Silberschatz, Korth and Sudarshan22.28Database System Concepts - 5th Edition, Aug 22,  2005.

Each Cohort (a.k.a. Participant)
The i-th cohort completes its local work (Qi), and decides 

whether it would like to commit or abort. Upon receiving 
the Commit_request from the coordinator, the cohort 
communicates its choice and 
 If its decision is to commit it goes to wait state Wi. 
 If its decision is to abort its goes to Abort state Ai

In Wi the cohort waits for the message from the coordinator. 
 If the instruction from the coordinator is commit, then the 

cohort commits (state Ci)
 If the instruction from the coordinator is abort, then the 

cohort aborts (state Ai)
 If the cohorts receives no instruction then the coordinator 

must wait holding on to all its resources: blocking 



15

©Silberschatz, Korth and Sudarshan22.29Database System Concepts - 5th Edition, Aug 22,  2005.

FailuresFailures

 Site Failure
 Coordinator Failure
 Communication Line Failure

©Silberschatz, Korth and Sudarshan22.30Database System Concepts - 5th Edition, Aug 22,  2005.

Three Phase Commit (3PC)Three Phase Commit (3PC)
 Avoids the blocking problem under the assumption that:

 The is no network partitioning
 <K sites fail (participants as well as coordinator)

 Initial Phase as 2PC
 When the coordinator reach commit decision it must first recording it in at least 

K sites (precommit phase) before it can proceed with (i) sending the actual 
decision to all sites and (ii) implementing it locally

 Knowledge of pre-commit decision can be used to commit despite coordinator 
failure 
 Avoids blocking problem as long as < K sites fail

 Drawbacks:  
 higher overheads
 assumptions may not be satisfied in practice



16

Database System Concepts, 5th Ed.
©Silberschatz, Korth and Sudarshan

See www.db-book.com for conditions on re-use 

End of ChapterEnd of Chapter


