
1

Database System Concepts, 5th Ed.
©Silberschatz, Korth and Sudarshan 

See www.db-book.com for conditions on re-use

©Silberschatz, Korth and Sudarshan4.2Database System Concepts, 5th Edition, Oct 5. 2006

  SQL Data Types and Schemas
  Integrity Constraints
  Authorization
  Embedded SQL
  Dynamic SQL
  Functions and Procedural Constructs**
  Recursive Queries**
  Advanced SQL Features**

2

©Silberschatz, Korth and Sudarshan4.3Database System Concepts, 5th Edition, Oct 5. 2006

  date: Dates, containing a (4 digit) year, month and date
  Example: date ʻ2005-7-27ʼ

  time: Time of day, in hours, minutes and seconds.
  Example: time ʻ09:00:30ʼ time ʻ09:00:30.75ʼ

  timestamp: date plus time of day
  Example: timestamp ʻ2005-7-27 09:00:30.75ʼ

  interval: period of time
  Example: interval ʻ1ʼ day
  Subtracting a date/time/timestamp value from another gives an

interval value
  Interval values can be added to date/time/timestamp values

©Silberschatz, Korth and Sudarshan4.4Database System Concepts, 5th Edition, Oct 5. 2006

  create type construct in SQL creates user-defined type

 create type Dollars as numeric (12,2) final

  create domain construct in SQL-92 creates user-defined domain
types

 create domain person_name char(20) not null

  Types and domains are similar. Domains can have constraints, such
as not null, specified on them.

3

©Silberschatz, Korth and Sudarshan4.5Database System Concepts, 5th Edition, Oct 5. 2006

  Domain constraints are the most elementary form of integrity
constraint. They test values inserted in the database, and test queries
to ensure that the comparisons make sense.

  New domains can be created from existing data types
  Example: create domain Dollars numeric(12, 2) 

 create domain Pounds numeric(12,2)
  We cannot assign or compare a value of type Dollars to a value of

type Pounds.
  However, we can convert type as below 

 (cast r.A as Pounds)  
(Should also multiply by the dollar-to-pound conversion-rate)

©Silberschatz, Korth and Sudarshan4.6Database System Concepts, 5th Edition, Oct 5. 2006

  not null
  primary key
  unique
  check (P), where P is a predicate

4

©Silberschatz, Korth and Sudarshan4.7Database System Concepts, 5th Edition, Oct 5. 2006

  Declare branch_name for branch is not null
 branch_name char(15) not null

  Declare the domain Dollars to be not null

 create domain Dollars numeric(12,2) not null

©Silberschatz, Korth and Sudarshan4.8Database System Concepts, 5th Edition, Oct 5. 2006

  unique (A1, A2, …, Am)
  The unique specification states that the attributes
 A1, A2, … Am 

form a candidate key.
  Candidate keys are permitted to be null (in contrast to primary keys).

5

©Silberschatz, Korth and Sudarshan4.9Database System Concepts, 5th Edition, Oct 5. 2006

  check (P), where P is a predicate

Example: Declare branch_name as the primary key for
branch and ensure that the values of assets are non-
negative.

create table branch 
 (branch_name char(15), 
 branch_city char(30), 
 assets integer, 
 primary key (branch_name), 
 check (assets >= 0))

©Silberschatz, Korth and Sudarshan4.10Database System Concepts, 5th Edition, Oct 5. 2006

  The check clause in SQL-92 permits domains to be restricted:
  Use check clause to ensure that an hourly_wage domain allows

only values greater than a specified value.
 create domain hourly_wage numeric(5,2) 

 constraint value_test check(value > = 4.00)
  The domain has a constraint that ensures that the hourly_wage is

greater than 4.00
  The clause constraint value_test is optional; useful to indicate

which constraint an update violated.

6

©Silberschatz, Korth and Sudarshan4.11Database System Concepts, 5th Edition, Oct 5. 2006

  Ensures that a value that appears in one relation for a given set of
attributes also appears for a certain set of attributes in another relation.
  Example: If “Perryridge” is a branch name appearing in one of the

tuples in the account relation, then there exists a tuple in the branch
relation for branch “Perryridge”.

  Primary and candidate keys and foreign keys can be specified as part of
the SQL create table statement:
  The primary key clause lists attributes that comprise the primary key.
  The unique key clause lists attributes that comprise a candidate key.
  The foreign key clause lists the attributes that comprise the foreign

key and the name of the relation referenced by the foreign key. By
default, a foreign key references the primary key attributes of the
referenced table.

©Silberschatz, Korth and Sudarshan4.12Database System Concepts, 5th Edition, Oct 5. 2006

create table customer 
(customer_name char(20), 
customer_street char(30), 
customer_city char(30), 
primary key (customer_name))

create table branch 
(branch_name char(15), 
branch_city char(30), 
assets numeric(12,2), 
primary key (branch_name))

7

©Silberschatz, Korth and Sudarshan4.13Database System Concepts, 5th Edition, Oct 5. 2006

create table account 
(account_numberchar(10), 
branch_name char(15), 
balance integer, 
primary key (account_number),  
foreign key (branch_name) references branch)

create table depositor 
(customer_name char(20), 
account_number char(10), 
primary key (customer_name, account_number), 
foreign key (account_number) references account, 
foreign key (customer_name) references customer)

©Silberschatz, Korth and Sudarshan4.14Database System Concepts, 5th Edition, Oct 5. 2006

  An assertion is a predicate expressing a condition that we wish the
database always to satisfy.

  An assertion in SQL takes the form
 create assertion <assertion-name> check <predicate>

  When an assertion is made, the system tests it for validity, and tests it
again on every update that may violate the assertion
  This testing may introduce a significant amount of overhead;

hence assertions should be used with great care.
  Asserting  

 for all X, P(X)  
is achieved in a round-about fashion using  
 not exists X such that not P(X)

8

©Silberschatz, Korth and Sudarshan4.15Database System Concepts, 5th Edition, Oct 5. 2006

  Every loan has at least one borrower who maintains an account with a
minimum balance or $1000.00

 create assertion balance_constraint check 
 (not exists ( 
 select *

 from loan 
 where not exists ( 
 select * 
 from borrower, depositor, account 
 where loan.loan_number = borrower.loan_number 
 and borrower.customer_name = depositor.customer_name 
 and depositor.account_number = account.account_number 
 and account.balance >= 1000)))

©Silberschatz, Korth and Sudarshan4.16Database System Concepts, 5th Edition, Oct 5. 2006

  The sum of all loan amounts for each branch must be less than the
sum of all account balances at the branch.

 create assertion sum_constraint check 
 (not exists (select *  
 from branch 
 where (select sum(amount)  

 from loan 
 where loan.branch_name =  

 branch.branch_name)  
 >= (select sum (amount)  

 from account 
 where loan.branch_name =  

 branch.branch_name)))

9

©Silberschatz, Korth and Sudarshan4.17Database System Concepts, 5th Edition, Oct 5. 2006

  ???
  For that you need triggers …

©Silberschatz, Korth and Sudarshan4.18Database System Concepts, 5th Edition, Oct 5. 2006

Forms of authorization on parts of the database:

  Read - allows reading, but not modification of data.
  Insert - allows insertion of new data, but not modification of existing data.
  Update - allows modification, but not deletion of data.
  Delete - allows deletion of data.

Forms of authorization to modify the database schema (covered in Chapter 8):
  Index - allows creation and deletion of indices.
  Resources - allows creation of new relations.
  Alteration - allows addition or deletion of attributes in a relation.
  Drop - allows deletion of relations.

10

©Silberschatz, Korth and Sudarshan4.19Database System Concepts, 5th Edition, Oct 5. 2006

  The grant statement is used to confer authorization
 grant <privilege list>
 on <relation name or view name> to <user list>

  <user list> is:
  a user-id
  public, which allows all valid users the privilege granted
  A role (more on this in Chapter 8)

  Granting a privilege on a view does not imply granting any privileges
on the underlying relations.

  The grantor of the privilege must already hold the privilege on the
specified item (or be the database administrator).

©Silberschatz, Korth and Sudarshan4.20Database System Concepts, 5th Edition, Oct 5. 2006

  The revoke statement is used to revoke authorization.
revoke <privilege list>
on <relation name or view name> from <user list>

  Example:
revoke select on branch from U1, U2, U3

  <privilege-list> may be all to revoke all privileges the revokee may
hold.

  If <revokee-list> includes public, all users lose the privilege except
those granted it explicitly.

  If the same privilege was granted twice to the same user by different
grantees, the user may retain the privilege after the revocation.

  All privileges that depend on the privilege being revoked are also
revoked.

11

©Silberschatz, Korth and Sudarshan4.21Database System Concepts, 5th Edition, Oct 5. 2006

  The SQL standard defines embeddings of SQL in a variety of
programming languages such as C, Java, and Cobol.

  A language to which SQL queries are embedded is referred to as a host
language, and the SQL structures permitted in the host language
comprise embedded SQL.

  The basic form of these languages follows that of the System R
embedding of SQL into PL/I.

  EXEC SQL statement is used to identify embedded SQL request to the
preprocessor
 EXEC SQL <embedded SQL statement > END_EXEC
Note: this varies by language (for example, the Java embedding uses 

 # SQL { …. };)

©Silberschatz, Korth and Sudarshan4.22Database System Concepts, 5th Edition, Oct 5. 2006

  Specify the query in SQL and declare a cursor for it
 EXEC SQL
 declare c cursor for  
 select depositor.customer_name, customer_city 
 from depositor, customer, account 
 where depositor.customer_name = customer.customer_name  
 and depositor account_number = account.account_number 

and account.balance > :amount
 END_EXEC

  From within a host language, find the names and cities of
customers with more than the variable amount dollars in some
account.

12

©Silberschatz, Korth and Sudarshan4.23Database System Concepts, 5th Edition, Oct 5. 2006

  The open statement causes the query to be evaluated
 EXEC SQL open c END_EXEC

  The fetch statement causes the values of one tuple in the query result
to be placed on host language variables.
 EXEC SQL fetch c into :cn, :cc END_EXEC 
Repeated calls to fetch get successive tuples in the query result

  A variable called SQLSTATE in the SQL communication area
(SQLCA) gets set to ʻ02000ʼ to indicate no more data is available

  The close statement causes the database system to delete the
temporary relation that holds the result of the query.
 EXEC SQL close c END_EXEC

Note: above details vary with language. For example, the Java
embedding defines Java iterators to step through result tuples.

©Silberschatz, Korth and Sudarshan4.24Database System Concepts, 5th Edition, Oct 5. 2006

  Can update tuples fetched by cursor by declaring that the cursor is for
update

 declare c cursor for 
 select * 
 from account 
 where branch_name = ʻPerryridgeʼ 
 for update

  To update tuple at the current location of cursor c
 update account 

 set balance = balance + 100 
 where current of c

13

©Silberschatz, Korth and Sudarshan4.25Database System Concepts, 5th Edition, Oct 5. 2006

  Allows programs to construct and submit SQL queries at run time.
  Example of the use of dynamic SQL from within a C program. 

char * sqlprog = “update account  
 set balance = balance * 1.05  

 where account_number = ?” 
EXEC SQL prepare dynprog from :sqlprog; 
char account [10] = “A-101”; 
EXEC SQL execute dynprog using :account;

  The dynamic SQL program contains a ?, which is a place holder for a
value that is provided when the SQL program is executed.

©Silberschatz, Korth and Sudarshan4.26Database System Concepts, 5th Edition, Oct 5. 2006

  API (application-program interface) for a program to interact with a
database server

  Application makes calls to
  Connect with the database server
  Send SQL commands to the database server
  Fetch tuples of result one-by-one into program variables

  ODBC (Open Database Connectivity) works with C, C++, C#, and
Visual Basic

  JDBC (Java Database Connectivity) works with Java

14

©Silberschatz, Korth and Sudarshan4.27Database System Concepts, 5th Edition, Oct 5. 2006

  JDBC is a Java API for communicating with database systems
supporting SQL

  JDBC supports a variety of features for querying and updating data, and
for retrieving query results

  JDBC also supports metadata retrieval, such as querying about
relations present in the database and the names and types of relation
attributes

  Model for communicating with the database:
  Open a connection
  Create a “statement” object
  Execute queries using the Statement object to send queries and

fetch results
  Exception mechanism to handle errors

©Silberschatz, Korth and Sudarshan4.28Database System Concepts, 5th Edition, Oct 5. 2006

  SQL:1999 supports functions and procedures
  Functions/procedures can be written in SQL itself, or in an external

programming language
  Functions are particularly useful with specialized data types such as

images and geometric objects
 Example: functions to check if polygons overlap, or to compare

images for similarity
  Some database systems support table-valued functions, which

can return a relation as a result
  SQL:1999 also supports a rich set of imperative constructs, including

  Loops, if-then-else, assignment
  Many databases have proprietary procedural extensions to SQL that

differ from SQL:1999

15

©Silberschatz, Korth and Sudarshan4.29Database System Concepts, 5th Edition, Oct 5. 2006

  Define a function that, given the name of a customer, returns the
count of the number of accounts owned by the customer.

 create function account_count (customer_name varchar(20))  
 returns integer 
 begin 
 declare a_count integer; 
 select count (*) into a_count 
 from depositor 
 where depositor.customer_name = customer_name 
 return a_count; 
 end

  Find the name and address of each customer that has more than one
account.
 select customer_name, customer_street, customer_city 

from customer 
where account_count (customer_name) > 1

©Silberschatz, Korth and Sudarshan4.30Database System Concepts, 5th Edition, Oct 5. 2006

  SQL:1999 permits the use of functions and procedures written in other
languages such as C or C++

  Declaring external language procedures and functions 

create procedure account_count_proc(in customer_name varchar(20), 
 out count integer) 
language C 
external name ʼ /usr/avi/bin/account_count_procʼ 

create function account_count(customer_name varchar(20)) 
returns integer 
language C 
external name ʻ/usr/avi/bin/author_countʼ

16

©Silberschatz, Korth and Sudarshan4.31Database System Concepts, 5th Edition, Oct 5. 2006

  Benefits of external language functions/procedures:
  more efficient for many operations, and more expressive power

  Drawbacks
  Code to implement function may need to be loaded into database

system and executed in the database systemʼs address space
  risk of accidental corruption of database structures
 security risk, allowing users access to unauthorized data

  There are alternatives, which give good security at the cost of
potentially worse performance

  Direct execution in the database systemʼs space is used when
efficiency is more important than security

Database System Concepts, 5th Ed.
©Silberschatz, Korth and Sudarshan 

See www.db-book.com for conditions on re-use

