
1

Database System Concepts, 5th Ed.

©Silberschatz, Korth and Sudarshan 

See www.db-book.com for conditions on re-use

©Silberschatz, Korth and Sudarshan
4.2
Database System Concepts, 5th Edition, Oct 5. 2006

  SQL Data Types and Schemas

  Integrity Constraints

  Authorization

  Embedded SQL

  Dynamic SQL

  Functions and Procedural Constructs**

  Recursive Queries**

  Advanced SQL Features**

2

©Silberschatz, Korth and Sudarshan
4.3
Database System Concepts, 5th Edition, Oct 5. 2006

  date: Dates, containing a (4 digit) year, month and date

  Example: date ʻ2005-7-27ʼ

  time: Time of day, in hours, minutes and seconds.

  Example: time ʻ09:00:30ʼ time ʻ09:00:30.75ʼ

  timestamp: date plus time of day

  Example: timestamp ʻ2005-7-27 09:00:30.75ʼ

  interval: period of time

  Example: interval ʻ1ʼ day

  Subtracting a date/time/timestamp value from another gives an

interval value

  Interval values can be added to date/time/timestamp values

©Silberschatz, Korth and Sudarshan
4.4
Database System Concepts, 5th Edition, Oct 5. 2006

  create type construct in SQL creates user-defined type

create type Dollars as numeric (12,2) final

  create domain construct in SQL-92 creates user-defined domain
types

create domain person_name char(20) not null

  Types and domains are similar. Domains can have constraints, such
as not null, specified on them.

3

©Silberschatz, Korth and Sudarshan
4.5
Database System Concepts, 5th Edition, Oct 5. 2006

  Domain constraints are the most elementary form of integrity
constraint. They test values inserted in the database, and test queries
to ensure that the comparisons make sense.

  New domains can be created from existing data types

  Example:
create domain Dollars numeric(12, 2) 

create domain Pounds numeric(12,2)

  We cannot assign or compare a value of type Dollars to a value of

type Pounds.

  However, we can convert type as below 

 (cast r.A as Pounds)  
(Should also multiply by the dollar-to-pound conversion-rate)

©Silberschatz, Korth and Sudarshan
4.6
Database System Concepts, 5th Edition, Oct 5. 2006

  not null

  primary key

  unique

  check (P), where P is a predicate

4

©Silberschatz, Korth and Sudarshan
4.7
Database System Concepts, 5th Edition, Oct 5. 2006

  Declare branch_name for branch is not null

 branch_name char(15) not null

  Declare the domain Dollars to be not null

 create domain Dollars numeric(12,2) not null

©Silberschatz, Korth and Sudarshan
4.8
Database System Concepts, 5th Edition, Oct 5. 2006

  unique (A1, A2, …, Am)

  The unique specification states that the attributes

 A1, A2, … Am 

form a candidate key.

  Candidate keys are permitted to be null (in contrast to primary keys).

5

©Silberschatz, Korth and Sudarshan
4.9
Database System Concepts, 5th Edition, Oct 5. 2006

  check (P), where P is a predicate

Example: Declare branch_name as the primary key for
branch and ensure that the values of assets are non-
negative.

create table branch 

 (branch_name char(15), 

 branch_city
 char(30), 

 assets
 integer, 

 primary key (branch_name), 

 check (assets >= 0))

©Silberschatz, Korth and Sudarshan
4.10
Database System Concepts, 5th Edition, Oct 5. 2006

  The check clause in SQL-92 permits domains to be restricted:

  Use check clause to ensure that an hourly_wage domain allows

only values greater than a specified value.

create domain hourly_wage numeric(5,2) 

constraint value_test check(value > = 4.00)

  The domain has a constraint that ensures that the hourly_wage is

greater than 4.00

  The clause constraint value_test is optional; useful to indicate

which constraint an update violated.

6

©Silberschatz, Korth and Sudarshan
4.11
Database System Concepts, 5th Edition, Oct 5. 2006

  Ensures that a value that appears in one relation for a given set of
attributes also appears for a certain set of attributes in another relation.

  Example: If “Perryridge” is a branch name appearing in one of the

tuples in the account relation, then there exists a tuple in the branch
relation for branch “Perryridge”.

  Primary and candidate keys and foreign keys can be specified as part of
the SQL create table statement:

  The primary key clause lists attributes that comprise the primary key.

  The unique key clause lists attributes that comprise a candidate key.

  The foreign key clause lists the attributes that comprise the foreign

key and the name of the relation referenced by the foreign key. By
default, a foreign key references the primary key attributes of the
referenced table.

©Silberschatz, Korth and Sudarshan
4.12
Database System Concepts, 5th Edition, Oct 5. 2006

create table customer 
(customer_name
char(20), 
customer_street
char(30), 
customer_city
char(30), 
primary key (customer_name))

create table branch 
(branch_name
char(15), 
branch_city
char(30), 
assets
numeric(12,2), 
primary key (branch_name))

7

©Silberschatz, Korth and Sudarshan
4.13
Database System Concepts, 5th Edition, Oct 5. 2006

create table account 
(account_number
char(10), 
branch_name
char(15), 
balance
integer, 
primary key (account_number),  
foreign key (branch_name) references branch)

create table depositor 
(customer_name
char(20), 
account_number
char(10), 
primary key (customer_name, account_number), 
foreign key (account_number) references account, 
foreign key (customer_name) references customer)

©Silberschatz, Korth and Sudarshan
4.14
Database System Concepts, 5th Edition, Oct 5. 2006

  An assertion is a predicate expressing a condition that we wish the
database always to satisfy.

  An assertion in SQL takes the form

create assertion <assertion-name> check <predicate>

  When an assertion is made, the system tests it for validity, and tests it
again on every update that may violate the assertion

  This testing may introduce a significant amount of overhead;

hence assertions should be used with great care.

  Asserting  

 for all X, P(X)  
is achieved in a round-about fashion using  
 not exists X such that not P(X)

8

©Silberschatz, Korth and Sudarshan
4.15
Database System Concepts, 5th Edition, Oct 5. 2006

  Every loan has at least one borrower who maintains an account with a
minimum balance or $1000.00

 create assertion balance_constraint check 
 (not exists ( 
 select *

 from loan 

 where not exists ( 
 select * 

 from borrower, depositor, account 

 where loan.loan_number = borrower.loan_number 

 and borrower.customer_name = depositor.customer_name 

 and depositor.account_number = account.account_number 

 and account.balance >= 1000)))

©Silberschatz, Korth and Sudarshan
4.16
Database System Concepts, 5th Edition, Oct 5. 2006

  The sum of all loan amounts for each branch must be less than the
sum of all account balances at the branch.

 create assertion sum_constraint check 
 (not exists (select *  
 from branch 

 where (select sum(amount)  

 from loan 

 where loan.branch_name =  

 branch.branch_name)  

 >= (select sum (amount)  

 from account 

 where loan.branch_name =  

 branch.branch_name)))

9

©Silberschatz, Korth and Sudarshan
4.17
Database System Concepts, 5th Edition, Oct 5. 2006

  ???

  For that you need triggers …

©Silberschatz, Korth and Sudarshan
4.18
Database System Concepts, 5th Edition, Oct 5. 2006

Forms of authorization on parts of the database:

  Read - allows reading, but not modification of data.

  Insert - allows insertion of new data, but not modification of existing data.

  Update - allows modification, but not deletion of data.

  Delete - allows deletion of data.

Forms of authorization to modify the database schema (covered in Chapter 8):

  Index - allows creation and deletion of indices.

  Resources - allows creation of new relations.

  Alteration - allows addition or deletion of attributes in a relation.

  Drop - allows deletion of relations.

10

©Silberschatz, Korth and Sudarshan
4.19
Database System Concepts, 5th Edition, Oct 5. 2006

  The grant statement is used to confer authorization

grant <privilege list>

on <relation name or view name> to <user list>

  <user list> is:

  a user-id

  public, which allows all valid users the privilege granted

  A role (more on this in Chapter 8)

  Granting a privilege on a view does not imply granting any privileges
on the underlying relations.

  The grantor of the privilege must already hold the privilege on the
specified item (or be the database administrator).

©Silberschatz, Korth and Sudarshan
4.20
Database System Concepts, 5th Edition, Oct 5. 2006

  The revoke statement is used to revoke authorization.

revoke <privilege list>

on <relation name or view name> from <user list>

  Example:

revoke select on branch from U1, U2, U3

  <privilege-list> may be all to revoke all privileges the revokee may
hold.

  If <revokee-list> includes public, all users lose the privilege except
those granted it explicitly.

  If the same privilege was granted twice to the same user by different
grantees, the user may retain the privilege after the revocation.

  All privileges that depend on the privilege being revoked are also
revoked.

11

©Silberschatz, Korth and Sudarshan
4.21
Database System Concepts, 5th Edition, Oct 5. 2006

  The SQL standard defines embeddings of SQL in a variety of
programming languages such as C, Java, and Cobol.

  A language to which SQL queries are embedded is referred to as a host
language, and the SQL structures permitted in the host language
comprise embedded SQL.

  The basic form of these languages follows that of the System R
embedding of SQL into PL/I.

  EXEC SQL statement is used to identify embedded SQL request to the
preprocessor

EXEC SQL <embedded SQL statement > END_EXEC

Note: this varies by language (for example, the Java embedding uses 

 # SQL { …. };)

©Silberschatz, Korth and Sudarshan
4.22
Database System Concepts, 5th Edition, Oct 5. 2006

  Specify the query in SQL and declare a cursor for it

 EXEC SQL

 declare c cursor for  
 select depositor.customer_name, customer_city 
 from depositor, customer, account 
 where depositor.customer_name = customer.customer_name  
 and depositor account_number = account.account_number 

and account.balance > :amount

 END_EXEC

  From within a host language, find the names and cities of
customers with more than the variable amount dollars in some
account.

12

©Silberschatz, Korth and Sudarshan
4.23
Database System Concepts, 5th Edition, Oct 5. 2006

  The open statement causes the query to be evaluated

EXEC SQL open c END_EXEC

  The fetch statement causes the values of one tuple in the query result
to be placed on host language variables.

EXEC SQL fetch c into :cn, :cc END_EXEC 
Repeated calls to fetch get successive tuples in the query result

  A variable called SQLSTATE in the SQL communication area
(SQLCA) gets set to ʻ02000ʼ to indicate no more data is available

  The close statement causes the database system to delete the
temporary relation that holds the result of the query.

EXEC SQL close c END_EXEC

Note: above details vary with language. For example, the Java
embedding defines Java iterators to step through result tuples.

©Silberschatz, Korth and Sudarshan
4.24
Database System Concepts, 5th Edition, Oct 5. 2006

  Can update tuples fetched by cursor by declaring that the cursor is for
update

 declare c cursor for 
 select * 
 from account 
 where branch_name = ʻPerryridgeʼ 
 for update

  To update tuple at the current location of cursor c

 update account 

 set balance = balance + 100 
 where current of c

13

©Silberschatz, Korth and Sudarshan
4.25
Database System Concepts, 5th Edition, Oct 5. 2006

  Allows programs to construct and submit SQL queries at run time.

  Example of the use of dynamic SQL from within a C program. 

char * sqlprog = “update account  
 set balance = balance * 1.05  

 where account_number = ?” 
EXEC SQL prepare dynprog from :sqlprog; 
char account [10] = “A-101”; 
EXEC SQL execute dynprog using :account;

  The dynamic SQL program contains a ?, which is a place holder for a
value that is provided when the SQL program is executed.

©Silberschatz, Korth and Sudarshan
4.26
Database System Concepts, 5th Edition, Oct 5. 2006

  API (application-program interface) for a program to interact with a
database server

  Application makes calls to

  Connect with the database server

  Send SQL commands to the database server

  Fetch tuples of result one-by-one into program variables

  ODBC (Open Database Connectivity) works with C, C++, C#, and
Visual Basic

  JDBC (Java Database Connectivity) works with Java

14

©Silberschatz, Korth and Sudarshan
4.27
Database System Concepts, 5th Edition, Oct 5. 2006

  JDBC is a Java API for communicating with database systems
supporting SQL

  JDBC supports a variety of features for querying and updating data, and
for retrieving query results

  JDBC also supports metadata retrieval, such as querying about
relations present in the database and the names and types of relation
attributes

  Model for communicating with the database:

  Open a connection

  Create a “statement” object

  Execute queries using the Statement object to send queries and

fetch results

  Exception mechanism to handle errors

©Silberschatz, Korth and Sudarshan
4.28
Database System Concepts, 5th Edition, Oct 5. 2006

  SQL:1999 supports functions and procedures

  Functions/procedures can be written in SQL itself, or in an external

programming language

  Functions are particularly useful with specialized data types such as

images and geometric objects

 Example: functions to check if polygons overlap, or to compare

images for similarity

  Some database systems support table-valued functions, which

can return a relation as a result

  SQL:1999 also supports a rich set of imperative constructs, including

  Loops, if-then-else, assignment

  Many databases have proprietary procedural extensions to SQL that

differ from SQL:1999

15

©Silberschatz, Korth and Sudarshan
4.29
Database System Concepts, 5th Edition, Oct 5. 2006

  Define a function that, given the name of a customer, returns the
count of the number of accounts owned by the customer.

 create function account_count (customer_name varchar(20))  
 returns integer 
 begin 
 declare a_count integer; 
 select count (*) into a_count 
 from depositor 
 where depositor.customer_name = customer_name 
 return a_count; 
 end

  Find the name and address of each customer that has more than one
account.

select customer_name, customer_street, customer_city 

from customer 

where account_count (customer_name) > 1

©Silberschatz, Korth and Sudarshan
4.30
Database System Concepts, 5th Edition, Oct 5. 2006

  SQL:1999 permits the use of functions and procedures written in other
languages such as C or C++

  Declaring external language procedures and functions 

create procedure account_count_proc(in customer_name varchar(20), 
 out count integer) 
language C 
external name ʼ /usr/avi/bin/account_count_procʼ 

create function account_count(customer_name varchar(20)) 
returns integer 
language C 
external name ʻ/usr/avi/bin/author_countʼ

16

©Silberschatz, Korth and Sudarshan
4.31
Database System Concepts, 5th Edition, Oct 5. 2006

  Benefits of external language functions/procedures:

  more efficient for many operations, and more expressive power

  Drawbacks

  Code to implement function may need to be loaded into database

system and executed in the database systemʼs address space

  risk of accidental corruption of database structures

 security risk, allowing users access to unauthorized data

  There are alternatives, which give good security at the cost of
potentially worse performance

  Direct execution in the database systemʼs space is used when
efficiency is more important than security

Database System Concepts, 5th Ed.

©Silberschatz, Korth and Sudarshan 

See www.db-book.com for conditions on re-use

