
29 September 2011

Create and Evaluate an
Efficient Implemtnataion

 of
 Bzet Bitstring Compression

 Robert Uzgalis
 Tigertail Associates

What’s a Bitstring

A bitstring is a sequential series of bits,
that is 1s and 0s or True and False marks.

Position in a bitstring is important. That is
1010 is different from 0011 even though they both
have two True bits and two False bits.

A good example of a bitstring is a computer register.

Bitstrings are Information
Bits in a bitstring represent information.
Sometimes numeric, positional, or just
symbolic.

● Numerical ... each bit is a power of 2 and the sum represents
the integer.

● Positional ... each bit corresponds to a position in something --
like a record in a data base.

● Symbolic ... each bit means something. Like the first bit means:
is a person. The second bit means: is female...

Big Bitstrings

Bitstrings tend to get larger with time.
● In numeric representations, from overflow
● In computer design registers increase in size

for increased performance and to make easy
use of parallelism.

● In database retrieval because data bases tend
to get larger with time.
Bitstring is a bit of a mouthful, in the future just
bitsets, which is shorter and easier to say.

Sparse Bitsets

A generalization: As bitsets get larger they
tend to get sparse.

● For example most algorithms use relatively
small numbers, far less than the size of
machine register.

● In databases rare properties are by
definition sparse, thus bitstrings which
locate these records are also sparse.

Taking advantage of Sparseness

● The usual way of taking advantage of sparseness
in large bitsets is to compress them with run-
length encoding.

● Run length encoding is a linear compression
technique that replaces a run of zeros or ones
with a length and an attribute
So for example: (128)0 (128)0 (1)1 (127)0 (128)0
could be a run length encoding of a 512 bit bitset
with a 1 bit near the middle. With a little trickery
this could be packed into 5 bytes or 40 bits.

A New Way to Compress

I invented a positional, varying length, exponential,
encoding, as a general, more useful, way of doing
compression. Call this new representation a Bzet*.
Details of the method are contained in the power
point slides from a presentation I gave here at UCLA
on May 5th and in a Python program that implements
the method. I won't go into the details here.

* patent pending.

Bzets
Bzets come in multiple flavors. They are a tree
based representation and the degree of branching in
the tree determines the flavor. A Binary Bzet has two
way branching; An Octal Bzet has eight way
branching and so on. Multi-flavor Bzets are also
possible, where different levels of the tree have
different degrees of branching.

● For software implementation on current
computer architectures Octal Bzets seem
optimal.

● For hardware implementation a Binary Bzet
seems more appropriate.

Bzets

One of the important properties of Bzets is that
operations on bitsets like AND, OR, and XOR
are done on the compressed bitsets. This
means that one NEVER unpacks and repacks
the Bzet to do operations. And thus the time to
do operations is compressed as well as the
space saved. The Bzet software includes many
operations. And others could be added.

The Software Implementation

Currently there is a proof-of-concept
software implementation of Octal Bzets
written in Python 3. This project would
replace this software with a C or C++
efficient version of the software and provide
an API for Python 2/3, C, and maybe some
other high level languages to allow free
non-profit use of the Bzet idea.

Software

If the BZET software gets done quickly or if
there is enough man-power in the group
then a matching efficient run-length
encoding API might also be built to allow
speed and storage comparisons to be done
in an application.

So the Project consists of:
I. Understanding the Bzet compression technique.
II. Designing a Bzet API for C and Python 2/3.
III. Creation of some new algorithms for Bzet processing
 (e.g. right and left shifting of bitsets).
IV. Implementing the Bzet algorithms in efficient
 C or C++ code.
V. Finding or writing RLE code and building
 a compatible RLE API.
VI. Running some comparison performance tests with
 the RLE and Bzet compressions.
VII. Documenting what you have done and reporting
 the results from the Bzet/RLE comparison tests.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

