CS143: Disks and Files

Magnetic disk vs SSD

- Magnetic Disk
 - Stores data on a magnetic disk
 - Typical capacity: 100GB – 10TB
- Solid State Drive
 - Stores data in NAND flash memory
 - Typical capacity: 100GB – 1TB
 - Much faster and more reliable than magnetic disk
 - But, x10 more expensive and limited write cycles (~2000)

Structure of a Platter

- Track, cylinder, sector (=block, page)
Typical Magnetic Disk

- Platter diameter: 1-5 in
- Platters: 1 – 20
- Tracks: 100 – 5000
- Sectors per track: 200 – 5000
- Sector size: 512 – 50K
- Rotation speed: 1000 – 15000 rpm
- Overall capacity: 100G – 10TB

Q: 2 platters, 2 surfaces/platter, 5000 tracks/surface, 1000 sectors/track, 1KB/sector. What is the overall capacity?

Capacity of Magnetic Disk

- Capacity keeps increasing, but what about speed?

Access Time

- Access time = (seek time) + (rotational delay) + (transfer time)

Seek Time

- Time to move a disk head between tracks
 - Track to track ~ 1ms
 - Average ~ 10 ms
 - Full stroke ~ 20 ms

Rotational Delay

- Typical disk: 1000 rpm – 15000 rpm
- Q: For 6000 RPM, average rotational delay?
Transfer Rate

Read blocks as the platter rotates

6000 RPM, 1000 sectors/track, 1KB/sector
- Q: How long to read one sector?
- Q: What is the transfer rate (bytes/sec)?

(Burst) Transfer Rate

- (Burst) Transfer rate = (RPM / 60) * (sectors/track) * (bytes/sector)

Sequential vs. Random I/O

- Q: How long to read 3 sequential sectors?

Sequential vs. Random I/O

- Q: How long to read 3 random sectors?

Random I/O

- For magnetic disks:
 - Random I/O is VERY expensive compared to sequential I/O
 - Avoid random I/O as much as we can

Magnetic Disk vs SSD

<table>
<thead>
<tr>
<th></th>
<th>Magnetic</th>
<th>SSD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random IO</td>
<td>~100 I/Os/sec</td>
<td>~100K I/Os/sec</td>
</tr>
<tr>
<td>Transfer rate</td>
<td>~100MB/sec</td>
<td>~500MB/sec</td>
</tr>
<tr>
<td>Capacity/$</td>
<td>~1TB/$100 (in 2014)</td>
<td>~100GB/$100 (in 2014)</td>
</tr>
</tbody>
</table>

SSD speed gain is mainly from high random IO rate
RAID
- Redundant Array of Independent Disks
 - Create a large-capacity “disk volumes” from an array of many disks
- Q: Possible advantages and disadvantages?

RAID Pros and Cons
- Potentially high throughput
 - Read from multiple disks concurrently
- Potential reliability issues
 - One disk failure may lead to the entire disk volume failure
 - How should we store data into disks?
- Q: How should we organize the disks and store data to maximize benefit and minimize risks?

RAID Levels
- RAID 0: striping only (no redundancy)
- RAID 1: striping + mirroring
- RAID 5: striping + parity block

Data Modification
- Byte-level modification not allowed
 - Can be modified by blocks
- Q: How can we modify only a part of a block?

Abstraction by OS
- Sequential blocks
 - No need to worry about head, cylinder, sector
- Access to non-adjacent blocks
 - Random I/O
- Access to adjacent blocks
 - Sequential I/O

Buffers, Buffer pool
- Temporary main-memory “cache” for disk blocks
 - Avoid future read
 - Hide disk latency
 - Most DBMS let users change buffer pool size
Reference

- Storage review disk guide

Files: Main Problem

- How to store tables into disks?

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Jane</td>
<td>CS</td>
<td>3.7</td>
</tr>
<tr>
<td>Susan</td>
<td>ME</td>
<td>1.8</td>
</tr>
<tr>
<td>June</td>
<td>EE</td>
<td>2.6</td>
</tr>
<tr>
<td>Tony</td>
<td>CS</td>
<td>3.1</td>
</tr>
</tbody>
</table>

Spanned vs Unspanned

- Q: 512Byte block. 80Byte tuple. How to store?

Spanned vs Unspanned

- Unspanned

 T1
 T2
 T3

 T4
 T5
 T6

- Spanned

 T1
 T2
 T3

 T4
 T5
 T6

 T7
 T8

- Q: Maximum space waste for unspanned?

Variable-Length Tuples

- How do we store them?

Reserved Space

- Reserve the maximum space for each tuple

 T1
 T2
 T3

 T4
 T5
 T6

- Q: Any problem?
Variable-Length Space

- Pack tuples tightly
- Q: How do we know the end of a record?
- Q: What to do for delete/update?
- Q: How can we “point to” to a tuple?

Slotted Page

Q: How can we point to a tuple?

Long Tuples

- ProductReview(
 pid INT,
 reviewer VARCHAR(50),
 date DATE,
 rating INT,
 comments VARCHAR(1000))
- Block size 512B
- How should we store it?

Long Tuples

- Spanning
- Splitting tuples

Sequential File

- Tuples are ordered by certain attribute(s) (search key)

<table>
<thead>
<tr>
<th>Name</th>
<th>Dept</th>
<th>GPA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elaine</td>
<td>CS</td>
<td>3.7</td>
</tr>
<tr>
<td>James</td>
<td>ME</td>
<td>2.8</td>
</tr>
<tr>
<td>John</td>
<td>EE</td>
<td>1.8</td>
</tr>
<tr>
<td>Peter</td>
<td>EE</td>
<td>3.9</td>
</tr>
<tr>
<td>Susan</td>
<td>CS</td>
<td>1.0</td>
</tr>
<tr>
<td>Tony</td>
<td>EE</td>
<td>2.4</td>
</tr>
</tbody>
</table>

Sequencing Tuples

- Inserting a new tuple
 - Easy case
Sequencing Tuples

Two options

1) Rearrange

| T1 | T3 | T6 | T7 | T8 |

2) Linked list

| T1 | T7 | T4 | T5 | T8 |
| T6 | T3 | T4 | T5 | T9 |

Sequencing Tuples

• Inserting a new tuple
 – Difficult case

| T1 | T4 | T5 | T8 | T9 |

• Reserving free space to avoid overflow
 – PCTFREE in DBMS

```
CREATE TABLE R(a int) PCTFREE 40
```

Sequencing Tuples Initially

• CREATE TABLE T ...;
 INSERT INTO T
 (SELECT * ... ORDER BY key);

• Future insertions will gradually destroy the order
 – Periodic reordering may be necessary

• Other possibilities discussed later

Things to Remember

• Disk
 – Platter, track, cylinder, sector, block
 – Seek time, rotational delay, transfer time
 – Random I/O vs Sequential I/O

• Files
 – Spanned/unspanned tuples
 – Variable-length tuples (slotted page)
 – Long tuples
 – Sequential file and search key
 • Problems with insertion (overflow page)
 • PCTFREE