INTRODUCTION

Main question

• How do we design “good” tables for a relational database?
 – Typically we start with ER and convert it into tables
 – Still, different people come up with different ER, and thus different tables. Which one is better? What design should we choose?

Warning

• The most difficult and theoretical part of the course. Pay attention!

MOTIVATION & INTUITION

(StudentClass(sid, name, addr, dept, cnum, title, unit) slide)

• Q: Is it a good table design?

• REDUNDANCY: The same information mentioned multiple times. Redundancy leads to potential anomaly.
 1. UPDATE ANOMALY: Only some information may be updated
 – Q: What if a student changes the address?

 2. INSERTION ANOMALY: Some information cannot be represented
– Q: What if a student does not take any class?

3. DELETION ANOMALY: Deletion of some information may delete others
 – Q: What if the only class that a student takes is cancelled?

• Q: Is there a better design? What tables would you use?

• Q: Any way to arrive at such table design more systematically?
 – Q: Where is the redundancy from?
 ⟨Slide on “guessing” missing info⟩

– FUNCTIONAL DEPENDENCY: Some attributes are “determined” by other attrs
 * e.g., sid → (name, addr), (dept, cnum) → (title, unit)
 * When there is a functional dependency, we may have redundancy.
 · e.g., (301, James, 11 West) is stored redundantly. So is (CS, 143, database, 04).

– DECOMPOSITION: When there is a FD, no need to store multiple instances of this relationship. Store it once in a separate table
 * ⟨Intuitive normalization of StudentClass table⟩
 StudentClass(sid, name, addr, dept, cnum, title, unit)
 FDs: sid → (name, addr), (dept, cnum) → (title, unit)
 1. sid → (name, addr): no need to store it multiple time. separate it out

2. (dept, cnum) → (title, unit). separate it out

• Basic idea of table “normalization”
Whenever there is a FD, the table may be “bad” (not in normal form)
– We use FDs to “split” or “decompose” table and remove redundancy
– We learn FUNCTIONAL DEPENDENCY and DECOMPOSITION to formalize this.

FUNCTIONAL DEPENDENCY

Overview
• The fundamental tool for normalization theory
• May seem dry and irrelevant, but bear with me. Extremely useful
• Things to learn
 – FD, trivial FD, logical implication, closure, FD and key, projected FD

Functional dependency \(X \rightarrow Y \)
• Notation: \(u[X] \) - values for the attributes \(X \) of tuple \(u \)
e.g, Assuming \(u = (\text{sid: 100}, \text{name: James}, \text{addr: Wilshire}) \), \(u[\text{sid, name}] = (100, \text{James}) \)
• FUNCTIONAL DEPENDENCY \(X \rightarrow Y \)
 – For any \(u_1, u_2 \in R \), if \(u_1[X] = u_2[X] \), then \(u_1[Y] = u_2[Y] \)
 – More informally, \(X \rightarrow Y \) means that “no two tuples in R can have the same \(X \) values but different \(Y \) values”
 \(<\text{e.g., StudentClass}(\text{sid, name, addr, dept, cnum, title, unit})>\)
 * Q: \(\text{sid} \rightarrow \text{name} \)?

* Q: \(\text{dept, cnum} \rightarrow \text{title, unit} \)?

* Q: \(\text{dept, cnum} \rightarrow \text{sid} \)?

– Whether a FD is true or not depends on real-world semantics

(examples)
A	B	C
a₁ | b₁ | c₁
a₁ | b₂ | c₂
a₂ | b₁ | c₃

Q: AB → C. Is this okay?

Replace c₃ to c₁.

A	B	C
a₁ | b₁ | c₁
a₁ | b₂ | c₂
a₂ | b₁ | c₁

Q: AB → C. Is this okay?

NOTE: AB → C does not mean no duplicate C values.

Replace b₂ to b₁

A	B	C
a₁ | b₁ | c₁
a₁ | b₁ | c₂
a₂ | b₁ | c₃

Q: AB → C. Is this okay?

- **TRIVIAL** functional dependency: \(X \rightarrow Y \) when \(Y \subset X \)
 - It is always true regardless of real world semantics
 (diagram)

- **NON-TRIVIAL** FD: \(X \rightarrow Y \) when \(Y \not\subset X \)
 (diagram)

- **COMPLETELY NON-TRIVIAL** FD: \(X \rightarrow Y \) with no overlap between \(X \) and \(Y \)
 (diagram)

We will focus on completely non-trivial functional dependency.

Implication and Closure

- **LOGICAL IMPLICATION**

 ex) \(R(A, B, C, G, H, I) \)
 \(F: A \rightarrow B, A \rightarrow C, CG \rightarrow H, CG \rightarrow I, B \rightarrow H \) (set of functional dependencies)
Q: Is \(A \rightarrow H \) true under \(F \)?

\(\text{F LOGICALLY IMPLIES } A \rightarrow H \)

(canonical database method to prove \(A \rightarrow H \))

\[
\begin{array}{cccccc}
A & B & C & G & H & I \\
\hline
a_1 & b_1 & c_1 & g_1 & h_1 & i_1 \\
\hline
\end{array}
\]

If \(? = h_1 \), then \(A \rightarrow H \)

* Q: \(AG \rightarrow I \)?

- CLOSURE OF FD \(F \): \(F^+ \)

\(F^+ \): the set of all FD’s that are logically implied by \(F \).

- CLOSURE OF ATTRIBUTE SET \(X \): \(X^+ \)

\(X^+ \): the set of all attrs that are functionally determined by \(X \)

- Q: What attribute values do we know given (sid, dept, cnum)?

- CLOSURE \(X^+ \) COMPUTATION ALGORITHM

\(\langle X^+ \) computation algorithm slide\)

Start with \(X^+ = X \)
Repeat until no change in \(X^+ \)
 - If there is \(Y \rightarrow Z \) and \(Y \subset X^+ \), add \(Z \) to \(X^+ \)

\(\langle \text{example} \rangle \)

R(\(A, B, C, G, H, I \)) and \(A \rightarrow B, A \rightarrow C, CG \rightarrow H, CG \rightarrow I, B \rightarrow H \)

- Q: \(\{A\}^+ \)?
– Q: \(\{A, G\}^+?\)

FUNCTIONAL DEPENDENCY AND KEY

– Key determines a tuple and functional dependency determines other attributes. Any formal relationship?
– Q: In previous example, is \((A, B)\) a key of \(R\)?

\[R(A, B, C, G, H, I)\text{ and } A \rightarrow B, A \rightarrow C, CG \rightarrow H, CG \rightarrow I, B \rightarrow H\]

– \(X\) is a KEY of \(R\) if and only if
 1. \(X \rightarrow \) all attributes of \(R\) (i.e., \(X^+ = R\))
 2. No subset of \(X\) satisfies 1 (i.e., \(X\) is minimal)

PROJECTING FD

\[R(A, B, C, D) : A \rightarrow B, B \rightarrow A, A \rightarrow C\]

– Q: What FDs hold for \(R'(B, C, D)\) which is a projection of \(R\)?

– In order to find FD’s after projection, we first need to compute \(F^+\) and pick the FDs from \(F^+\) with only the attributes in the projection.

DECOMPOSITION

– (Remind the decomposition idea of StudentClass table)

– Splitting table \(R(A_1, \ldots, A_n)\) into two tables, \(R_1(A_1, \ldots, A_i)\) and \(R_2(A_j, \ldots, A_n)\)
 – \(\{A_1, \ldots, A_n\} = \{A_1, \ldots, A_i\} \cup \{A_j, \ldots, A_n\}\)
 – (Conceptual diagram for \(R(X, Y, Z) \rightarrow R_1(X, Y)\) and \(R_2(Y, Z)\))
• Q: When we decompose, what should we watch out for?

LOSSLESS-JOIN DECOMPOSITION
• \(R = R_1 \bowtie R_2 \)
• Intuitively, we should not lose any information by decomposing \(R \)
• Can reconstruct the original table from the decomposed tables
• Q: When is decomposition lossless?

<table>
<thead>
<tr>
<th>cnum</th>
<th>sid</th>
<th>name</th>
</tr>
</thead>
<tbody>
<tr>
<td>143</td>
<td>1</td>
<td>James</td>
</tr>
<tr>
<td>143</td>
<td>2</td>
<td>Elaine</td>
</tr>
<tr>
<td>325</td>
<td>3</td>
<td>Susan</td>
</tr>
</tbody>
</table>

– Q: Decompose into \(S_1(\text{cnum, sid}) \), \(S_2(\text{cnum, name}) \). Lossless?

– Q: Decompose into \(S_1(\text{cnum, sid}) \), \(S_2(\text{sid, name}) \). Lossless?

• DECOMPOSITION \(R(X, Y, Z) \Rightarrow R_1(X, Y), R_2(X, Z) \) IS LOSSLESS IF \(X \rightarrow Y \) OR \(X \rightarrow Z \)
 – That is, the shared attributes are the key of one of the decomposed tables
 – We can use FDs to check whether a decomposition is lossless

Example: StudentClass(\(\text{sid, name, addr, dept, cnum, title, unit} \))
 \(\text{sid} \rightarrow (\text{name,addr}), (\text{dept,cnum}) \rightarrow (\text{title,unit}) \)
 * Q: Decomposition into \(R_1(\text{sid, name, addr}) \), \(R_2(\text{sid, dept, cnum, title, unit}) \). Lossless?
BOYCE-CODD NORMAL FORM (BCNF)

FD, key & redundancy

- **Example:** StudentClass(sid, name, addr, dept, cnum, title, unit)
 - Q: sid → (name, addr). Does it cause redundancy?

 - After decomposition, Student(sid, name, addr)
 * Q: sid → (name, addr). Does it still cause redundancy?

 * Q: Why does the same FD cause redundancy in one case, but not in the other?

- In general, FD X → Y leads to redundancy if X DOES NOT CONTAIN A KEY.

BCNF definition

- R is in BCNF with regard to F, iff for every non-trivial X → Y, X contains a key
- “Good” table design (no redundancy due to FD)
- Q: Class(dept, cnum, title, unit). dept, cnum→title, unit.
 - Q: Intuitively, is it a good table design? Any redundancy? Any better design?

 - Q: Is it in BCNF?

- Q: Employee(name, dept, manager). name→dept, dept→manager.
 - Q: What is the English interpretation of the two dependencies?

 - Q: Intuitively, is it a good table design? Any redundancy? Better design?
• **Remarks:** Most times, BCNF tells us when a design is “bad” (due to redundancy from functional dependency.

BCNF normalization algorithm

• Decomposing tables until all tables are in BCNF

 – For each FD $X \rightarrow Y$ that violates the condition, separate those attributes into another table to remove redundancy.

 – We also have to make sure that this decomposition is lossless.

• **Algorithm**

 For any R in the schema

 If non-trivial $X \rightarrow Y$ holds on R, and if X does not have a key

 1. Compute X^+ (X^+: closure of X)

 2. Decompose R into $R_1(X^+)$ and $R_2(X, Z)$ // X is common attributes where Z is all attributes in R except X^+

 Repeat until no more decomposition

• **Example:** ClassInstructor(dept, cnum, title, unit, instructor, office, fax)

 instructor \rightarrow office, office \rightarrow fax

 (dept, cnum) \rightarrow (title, unit), (dept, cnum) \rightarrow instructor.

 – **Q:** What is the English interpretation of the two dependencies?

 – **Q:** Intuitively, is it a good table design? Any redundancy? Better design?

 – **Q:** Is it in BCNF?

 – **Q:** Normalize it into BCNF using the algorithm.
NOTE: The algorithm guarantees lossless join decomposition, because after the decomposition based on $X \rightarrow Y$, X becomes the key of one of the decomposed table.

- **Example:** $R(A, B, C, G, H, I)$, $A \rightarrow B$, $A \rightarrow C$, $G \rightarrow I$, $B \rightarrow H$. Convert to BCNF.

- **Q:** Does the algorithm lead to a unique set of relations?

 \{(e.g., $R(A, B, C)$, $A \rightarrow C$, $B \rightarrow C$)\}

 Q: What if we start with $A \rightarrow C$?

 Q: What if we start with $B \rightarrow C$?

- **Q:** $R_1(A, B)$, $R_2(B, C, D)$ with $A \rightarrow B$, $B \rightarrow A$, $A \rightarrow C$. Are R_1 and R_2 in BCNF?

NOTE: We have to check all implied FD’s for BCNF, not just the given ones.

MULTI-VALUED DEPENDENCY AND 4NF

Motivation

- **Example:** Classes, students and TAs. Every TA is for every student.

 cnum: 143, TA: (tony, james), sid: (100, 101, 103).
 cnum: 248, TA: (tony), sid: (100, 102).

 (entity-relationship diagram)

 (Potentially good table design)
(Potentially bad table design)

<table>
<thead>
<tr>
<th>cnum</th>
<th>ta</th>
<th>sid</th>
</tr>
</thead>
<tbody>
<tr>
<td>143</td>
<td>tony</td>
<td>143</td>
</tr>
<tr>
<td>143</td>
<td>james</td>
<td>143</td>
</tr>
<tr>
<td>248</td>
<td>tony</td>
<td>248</td>
</tr>
<tr>
<td></td>
<td></td>
<td>248</td>
</tr>
</tbody>
</table>

- **Q:** Does it have redundancy?

- **Q:** Does it have a FD?

- **Q:** Is it in BCNF?

- **Q:** Where does the redundancy come from?

Note:

* Two independent information (cnum, ta) and (cnum, sid) are put together in one table.
* No direct connection between ta and student. The connection is through class.

- **Q:** How can we detect this kind of “bad” design?

Q: Assume that we have seen only the first 7 tuples in the table. Just based on these, can we “predict” that the table should also contain the 8th tuple?
* Note:
 · In each class, every ta appears with every student \((ta \times \text{student})\)
 · For \(C_1\), if \(TA_1\) appears with \(S_1\) and \(TA_2\) appears with \(S_2\), then \(TA_1\) also appears with \(S_2\).

Multivalued dependency \(X \rightarrow Y\)

- **Definition:** for every tuple \(u, v \in R\):
 - If \(u[X] = v[X]\), then there exists a tuple \(w\) such that:
 1. \(w[X] = u[X] = v[X]\)
 2. \(w[Y] = u[Y]\)
 3. \(w[Z] = v[Z]\) where \(Z\) is all attributes in \(R\) except \(X\) and \(Y\)

(Explanation using canonical database)

- MVD requires that tuples of a certain form exist: “tuple generating dependency”

(Explanation using Y circle diagram)

- \(X \rightarrow Y\) means that if two tuples in \(R\) agree on \(X\), we can swap \(Y\) values of the tuples and the two new tuples should still exist in \(R\).

- **Example:** \(\text{Class(cnum, ta, sid)}. \ cnum \rightarrow ta? \ cnum \rightarrow sid?\)

- **COMPLEMENTATION RULE**
 - \(X \rightarrow Y\), then \(X \rightarrow Z\) where \(Z\) is all attributes in \(R\) except \(X\) and \(Y\)
 - Proof: swapping \(Y\) is the same as swapping \(Z\)

- **TRIVIAL MVD**
 - \(X \rightarrow Y\) is trivial MVD if
 1. \(Y \subset X\) or
 2. \(X \cup Y = R\)

(Prove by canonical database)

<table>
<thead>
<tr>
<th>(X)</th>
<th>(Y)</th>
<th>(Z)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x_1)</td>
<td>(y_1)</td>
<td>(z_1)</td>
</tr>
<tr>
<td>(x_1)</td>
<td>(y_2)</td>
<td>(z_2)</td>
</tr>
</tbody>
</table>

\(\rightarrow \)

\(x_1\) \(y_1\) \(z_2\)
FOURTH NORMAL FORM (4NF)

- Definition: R is in 4NF if for every nontrivial FD $X \rightarrow Y$ or MVD $X \rightarrow Y$, X contains a key

- **Q:** Relationship beteen BCNF and 4NF?

 $R(A_1, A_2, \ldots)$
 $X_1 \rightarrow Y_1$
 $X_2 \rightarrow Y_2$
 \ldots
 $Z_1 \rightarrow U_1$
 $Z_2 \rightarrow U_2$
 \ldots

 In BCNF, all X_i should contain a key
 In 4NF, all X_i’s and Z_i’s should contain a key
 (Vann diagram of BCNF and 4NF)

- 4NF removes redundancy from MVD
 - 4NF: no redundancy from MVD and FD.
 - BCNF: no redundancy from FD.

4NF DECOMPOSITION

- First, using all functional dependencies, normalize tables into BCNF. Once the tables are in BCNF, apply the following algorithm to normalize them further into 4NF.

- **Algorithm**

 For any R in the schema

 If non-trivial $X \rightarrow Y$ holds on R, and if X does not contain a key

 Decompose R into $R_1(X, Y)$ and $R_2(X, Z)$ // X is common attributes

 where Z is all attributes in R except (X, Y)

 Repeat until no more decomposition

- **Example:** Class(cnum, ta, sid). cnum \rightarrow ta.

 - **Q:** It is a good table design? Any better design?

 - **Q:** It is in 4NF?
• Example: Class(dept, cnum, title, ta, sid, sname).
 dept,cnum → title
 sid → sname
 dept,cnum → ta

• Q: Normalize into 4NF

SIMPLIFIED 4NF DEFINITION

• MVD AS A GENERALIZATION OF FD
 - If X → Y, then X → Y
 - Proof: If X → Y, swapping Y values does not create new tuples.

 \[
 \begin{array}{c|c|c}
 X & Y & Z \\
 \hline
 x_1 & y_1 & z_1 \\
 x_1 & y_2 & z_2 \\
 \hline
 \rightarrow x_1 & y_1 & z_2
 \end{array}
 \]

 * Simplified definition of 4NF: R is in 4NF if for every nontrivial MVD X → Y, X contains a key

* In general, we have to compute the implied MVDs after decomposition.
 · The derivation can be done using 8 inference rules for MVD
 (inference rule slides)
 * Formal derivation of implied MVDs is not a major topic of the class. For homeworks and exams, just derive them identify what are “intuitively” implied.
– Since $X \rightarrow Y$ implies $X \rightarrow Y$, this is sufficient.

GOOD TABLE DESIGN IN PRACTICE

• Normalization splits tables to reduce redundancy (based on FDs, MVDs).

• However, splitting tables has negative performance implication

 Example: Instructor: name, office, phone, fax
 name \rightarrow office, office \rightarrow (phone,fax)

 (design 1) Instructor(name, office, phone, fax)
 (design 2) Instructor(name, office), Office(office, phone, fax)

 Q: Retrieve (name, office, phone) from Instructor. Which design is better?

• As a rule of thumb, start with normalized tables and merge them if performance is not good enough