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Synopsis

Background I

The problem of data stream: Creas ” Stream (Approximate)
Buffer Processor Results

® One pass and Volume Data Streams

Solution Figure 1: Computation model for data streams
e Approximation and adaptivity

Model
e Stream processor and the synopsis maintenance in memory

e Bufferis like a recent part of the data from data streams
e Majority methods were designed for traditional database
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Market Analysis Model

e Example: Third customer bought item ¢ [0,1], ceg[2,3],g[4,5]

space constraints

® Problem:difficult to conduct the frequent pattern identification due to the limited time and
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FTP-DS: Frequent Temporal Patterns of
Data Streams

Two features

e One data scan for online statistics collection
o To attain the feature, the data segmentation and the pattern growth scenarios are used
o  Scans online transaction flows and generates candidate frequent patterns in real time

® regression based compact pattern representation
o  Create for pattern representation a compact ATF(Accumulated Time and Frequency)




Temporal Patterns

A temporal pattern is defined as a segment of signals that recurs frequently in the whole
temporal signal sequence.
e |n many applications:a time constraint is imposed during the mining process to meet
the respective constraint.
Support Framework for Temporal Patterns:
e In the previous example, we have <TxTime, CustomerlD, itemset>, all the transactions
of a customer can be viewed as sequence together.
e Problem arise due to the different support definitions and can not store all the historical
data.
Solution: Formulate a temporal pattern



pattern

Definition 1 The support or the occurrence frequency
of a temporal pattern X at a specific time t is denoted
by the ratio of the number of customers having pattern
X in the current time window to the total number of

customers.
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Definition of the support of a temporal

TxTime Occurrence(s) of {c, g} | Support
t=1 | w[0,1] | none 0
t=2 | w[0,2] | CustomerID={2, 4} 2/5=0.4
t=3 | w[0,3] | CustomerID={2, 3, 4} | 3/5=0.6
t=4 | w[1,4] | CustomerID={2, 3} 2/5=0.4
t=5 | w[2,5] | CustomerID={1, 3, 5} | 3/5=0.6
Table 1: The support values of the inter-transaction

itemset {c, g}

support

Figure 3: Support variations of the inter-transaction

itemset (c, g)




Major Features of Algorithm FTP-DS

One Scan for Statistics Collection:

Both method are designed to obtain approximate answers

Probabilities error bound

o  Based on the sampling technique
deterministic error bound

o Based on data segmentation technique
Those approaches might not work that well for singleton. -> prohibitive storage and computing
overheads.
Solution: Sliding window model employed, only the occurrences of singleton items are being
counted in the first time window.
After the counting iteration, frequent items which have supports no less than the specified
threshold are identified.




Example

MinSup = 0.4
Window size N =3

The averaged support value is represented by

(accumulated supports over windows)/(number of recorded windows)
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Table 2: Generation of frequent temporal itemsets

(MinSup=0.4)

e Since a pattern is not taken as a candidate to accumulate its occurrence counts before all its subsets

are found frequent
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Regression-Based Analysis on Frequent Patterns

A straight-line fit for a

time series s(t), which corresponds to the frequency
variation of a temporal pattern, is a linear estimation
function bf = ab + Bbt that conforms to the principle of
least squares. Specifically, the regression parameters ab
and Bb are chosen to make the residual sum of squares

a — Bt)*2 minimal, where fi is the actual

frequency in the i-th recorded point.

Major Features of Algorithm FTP-DS

To pe'rform the calculations for getting best esti-

mates of @ and B, the following quantities are main-

tained,
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Accumulated Time and
Frequency

Definition 2 The ATF form of the time series corre-
sponding to the frequency variation of a temporal pat-
tern is (ts, Y. tf, S°f, S f?), where ts is the start-
ing time, Y tf is the accumulated product of time and
support, and >_ f and > f? are, respectively, the sum
and the squared sum of pattern frequencies since the
pattern is recorded.

Proof: In a data stream environment, the current time
thow 1S always known and up-to-date as time advances.
Using the starting time ts, the accumulated values of
S~ t and 32 in the ATF form of a pattern can be ob-

trow trow
tained by Y.t = > t; and },t?> = . t2, since the
ti=t, ti=t
corresponding time series for a pattern is composed of
the averaged support values at every time unit dur-
ing t=[ts, tnow). In addition, the number of recorded
points is n=t,o,-ts+1.

Together with the other three measures, i.e., Y tf,
> f, 3 f?, the values of Sy, Sy and Si¢ can be ob-
tained through the equations:
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n

Sff s Ef2_(zf)2
% = yop- ZOEH

, and

Consequently, the least square estimates of @ and B
are computed by
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Therefore the fit line f = & + Bt for this pattern can

be precisely extracted from the ATF compact form.
Q.E.D.




Algorithm of FTP-DS

Since a frequent pattern does

not always have a very steady frequency, the frequency
threshold can be slightly lifted to be higher than the
real threshold MinSup. This option can help reducing
the overhead for recording unnecessary patterns with
the trade-off of a delayed recognition of some frequent

patterns.

Algorithm FTP-DS: Frequent Temporal Patterns of
Data Streams
Input: The window size N, and the support threshold
MinSup
Output: The set of frequent temporal patterns F with
their ATF forms
1. t=0;
2. buf=NULL; //buffer for storing recent transactions
3. F={all singleton items}; //initial candidate patterns
4. while(1){
5.  wait until t=t41;
6. data;=transactions in time slot t;
7.  buf=(bufUdata;)—data:—n; //data;—n is expired
8. foreach(p€F){
. p.count=0;
10. p-nWindow+=1;
1. }
12. count occurrences of each p€F from buf;
13. foreach(p€F){
14. p.sup=(p.sup+p.count /nCustomer) /p.nWindow;
15. if(p.sup<MinSup) remove p from F;
16. else update the ATF forms of p;
17.
18. F=FU{candidates generated from F};
19.}




Advantages of FTP  ggrgeT *

FROM DataStream
WHERE (Query Clause)
BEGIN (BeginTime)
END (EndTime).

o Inthe proposed framework, since the frequency variations of frequent patterns are

® Flexible Time intervals
o Example

recorded, the answers to queries with variable time intervals are directly supported.
e Trend detection
o  Can detect pattern
o  Even if pattern changes, can still detect it in later intervals




Execution Time (sec.)

of FTP-DS
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Feasibility and Scalability
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Figure 8: Required resources for synthetic datasets:
(a) memory; (b) execution time




FTP-DS

e Two major features
o  One data scan for online statistics collection
o  Regression-based compact pattern representation
e Variable time intervals
e Trent detection effectively




What if There Are Missing
Values In the Data Stream?

My Reaction

o . N
When My Teacher Ask Me
To Answer the Ouestlon




What Do You Mean Missing Values?

What are some applications of data streams?
o Network traffic

o  Call center records

o  Many sensors throughout a scattered area &«h

e What happens if a few of the sensors malfunction and are unable to send any
data? le. a few sensors get destroyed by weather conditions

e Most algorithms assume that we have standard operation, in that nothing has

malfunctioned.




Why |s This a Problem?

In order to use the linear regression model, we cannot have empty probability values in
the data input.
Can we just ignore the data point with missing values?

e We cannotignore the data point with the missing values because we need to
continuously predict the outcomes of data points as they come in. If we ignore them, we

would have no output at certain points.
o  Even worse, if a period of time has missing variables, then we would have no output at all for
that period of time!




How To Fix the Problem?

Since we cannot ignore any data points that have missing values, this means we must
use the method of imputation to patch missing values. (Fill in the blanks)

e The two most common and popular ways to input missing values in datasets are:

1. Impute a single value |
2. Use a model to impute the value : .,f'—':

Im-pute /im pyoot/ verb

represent (something, especially something undesirable) as being
done, caused, or possessed by someone; attribute.




Single Value Impute

Constant Value Impute (ie. a sample mean, a constant c, etc.)
+ Computationally very simple
- lgnores relationship between variables in the data, thus weakening variance and covariance
estimates
Regressional Value Impute
+ Takes into account relationships between variables using regression models(uses the
non-missing features as the input to find out the missing feature)
- Requires 2r imputation models, where r is the number of input features. (Assumes binary
features)
is impractical and often computationally infeasible for streaming data applications




Model-Based Impute

All very popular and also powerful, but very costly in computation
e Maximum Likelihood Imputation
+ Chooses as estimate the value that maximizes the probability of observing non-missing
values
- Requires iterative calculations
e Multiple Imputation

+  Averages across multiple imputed data sets, using randomized imputation method

- Requires multiple imputation calculations, and then averaging them for each input
e In general, Model-Based inputs are accurate, but mostly for static datasets that are not streams, and
want to reconstruct the data as accurately as possible




Verdict: Single Value Impute

Because of how much costly computations are required to do model-based imputes, the best

choice is to use single value imputes using a sample mean (this minimizes MSE)
O  This minimizes MSE and accounts for the problem of increased variance and covariance mentioned by
(Allison 2001), simply by only updating the model when there is no missing values.

True that It ignores relations between input variables, but we don’t necessarily need to
replicate the dataset exactly - we just need to be accurate enough by satisfying a specified
Mean Square Error (MSE)

| W 1
MSE = -0V —y®)? = —(0e—y)T(0-y),
55 &

Where vy is the actual value, o is the predicted value, and n is the number of values in testing




Predicting the Output

The prediction vector is calculated using least squares

Bows = argmin (7~ XB) (v~ XB)) = X"X)~'XTy,
where B is the prediction vector, y is the training output, and X is the training input.

e Intandem with the MSE equation, we get the following equations based on certain criteria, ie.
whether or not each variable in the input vector is independent, or whether or not missing values
appear at a fixed probability.




B is regression coefficients, C is the
covariance matrix of input data, z is
M S E \/a | u e S Va ry relation vector of input data and
the target variable, D = diag(C), H =
I=diag(p), Irxr is the identity matrix,
p=probability of missing value

Notation  Proposition = Missing  Equal Standardized Equation
values probabilities  inputs and
of missing  target E[MSEp] = BT HDB + BT H(C - D)HB
MSE Eq. 4 No _ _ — 2BT Hz + VarO[y] + (x B = 7y) 2

MSEp Prop. 1 Yes No No E[MSE*p] = BT HB + BT H(C - )Hp -
MSE} Prop. 2 Yes No Yes QBT Hz +1
MSE7, Prop. 3 Yes Yes Yes

E[MSE*p] = (1 — p)E[MSEOQ] + p - p(1
- p)BT (C-1)B.




Memory Needed

Estimate

& Covariance matrix rXr r2

z Input-target relation rx 1 r

p Probabilities of missing rx 1 r
Mean and SD of inputs 2 rl 2r
Mean and SD of target 2:5¢1 561 2

Total memory




The Robust Algorithm

Data: stream of observations x,
stream of true target values y,
forgetting factors @ € (0, 1), y € (0, 1)

Result: stream of predictions o

1 Initialization: C <« Lz « (1,..., DT, p« ©,...,00T,8 < (0,...,07;
2 fort < 1tooodo

3 new observation x arrives, predict o = x8 ;

4 | true target value y arrives ;

5 if no missing values in x then

6 update covariance C < axI'x + (1-a)C;

7 update relation z < ax’ y + (1 — a)z;

8 update missing value estimate p < (1 — y)p;

9 end
10 else

11 record missing value indicator m, where m; = 1ifi th yalye in x is missing, and 0 otherwise ;
12 update missing value estimates p <— ym + (1 — y)p;
13 end

14 | update model B = (C — diag(p)(C — 1))~ z;

15 end




Testing the Imputation and Prediction
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Winner!

Table S Empirical — ﬂT(C — I) B, the smaller the better

ALL rALL SEL rSEL PCA rPCA PLS ROB
Catalyst 1.6 0.8 0.5 0.1 0.0 —-0.1 0.9 04
Chemi 6.4 3.1 0.4 0.2 —-0.2 —-0.2 59 0.8
Concrete 0.6 0.3 0.0 0.0 -0.0 -0.0 0.5 0.1
CPU —0.1 —-0.2 —-0.2 —-0.3 —-0.3 -0.3 —0.1 0.8
Gaussian 0.6 —-0.1 —0.1 —-0.2 —-0.3 -0.3 —-0.0 0.6
Protein —-0.3 —-0.4 —0.2 —-0.2 —-0.7 —-0.7 —0.6 2.2
Wine 02 0.1 0.1 0.1 -0.1 -0.1 0.1 0.1
Year —-0.3 —-0.3 —-0.3 —-0.3 —-0.4 —-04 —-0.3 -14
The best result on each dataset is in bold




NO QUESTIONS ALLOWED

Just kidding.
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