CS 31 Worksheet Week 9

This worksheet is entirely optional, and meant for extra practice. Some problems will
be more challenging than others and are designed to have you apply your
knowledge beyond the examples presented in lecture, discussion or projects. All
exams will be done on paper, so it is in your best interest to practice these problems
by hand and not rely on a compiler.

Concepts: Pointers, Dynamic Allocation

Reading Problems

1. What will the following program output?:

#include <iostream>
using namespace std;
void showarray(int* a, int 1);

int main() {
char sl1[16] = "spring";
char* pl;
int a[8] = {3, 6, 9, 12, 15};
int b([(8] = {0,0,0,0,0,0,0,0};
int* x = &b[0];
int* p2;

showarray (a, 8);
showarray (x, 8);

for (int i = 0; 1 < 8; 1i++){

x[1i] = al[i] + *(a+7-1);

showarray (x, 8);

p2 = &al2];

p2 = p2 -1;
(*p2) ++;
p2-=;

(*p2) += p2[0];
showarray(a, 8);

pl = sl;

while (*pl) {
(*pl) -=7
pl++;

}

cout << sl <<endl;

return O0;

void showarray (int* a, int 1) {
int i,
for (i = 0; i < 1; i++) {
cout << *(a+i) << " ";
}

cout << endl;

2. Find the six errors in the following code, and write the fixes.
const int NAME LEN = 100;

class Cat {

int m_age;

char m name [NAME LEN];

string m_type;

Cat (int age, const char name[], string type) {
m_age = age;
m name = name;
m type = type;

}

public:

void introduce () {

cout << "Hi! I am a " + m _type + " cat" << endl;

}s

struct Sheep {
string m name;
int m_age;
Sheep (int age) {
m_age = age;
}

void introduce () {

cout << "Hi! I am " + m name + " the sheep" << endl;

int main () {
Cat* schrodinger = new Cat (5, "Schrodinger's cat", "Korat");
schrodinger->introduce () ;
cout << schrodinger->m age << endl;
Sheep dolly(6);
dolly->introduce () ;

delete schrodinger;
delete dolly;

3) Find the 4 errors in the following class definitions so the main function runs
correctly.

#include <iostream>
#include <string>
using namespace std;

class Account {
public:
Account (int x) {
cash = x;
}

int cash;

class Billionaire {
public:
Billionaire(string n) {
offshore = Account (1000000000) ;

name = ny;

Account account;
Account* offshore;

string name;

int main () {
Billionaire jim = Billionaire ("Jimmy") ;
cout << jim.name << " has "
<< jim.account.cash + jim.offshore->cash << endl;

Output: Jimmy has 1000010000

Programming Problems

1. After being defined by the above code, Jim the Billionaire funded a cloning
project and volunteered himself as the first human test subject. Sadly, all his
money isn't cloned, so his clone has his name, but has $0. Add the needed
function to the Billionaire class so the following main function produces the
following output.

int main() {

Billionaire jim = Billionaire("Jimmy");

Billionaire jimClone = jim;

cout << jimClone.name << " has"
<< jimClone.account.cash + jimClone.offshore->cash
<< endl:

cout << jim.name << " has"
<< jim.account.cash + jim.offshore->cash << end];

Output: Jimmy has O
Jimmy has 1000010000

2. We have the class Person that has two private data members:

o m_age (anint)

o m catchphrase (a string).
The Person class should have a default constructor that initializes its data
members to reasonable values and a second constructor that initializes the
data members to the values of its parameters. In addition, Person should have
three public member functions;

o getAge (), which returns the Person’s age

o haveBirthday (), which increments the Person’s age by 1

o speak (), which prints the Person’s catchphrase.

Write a program that repeatedly reads an age and a catchphrase from the user and
uses them to dynamically allocate a Person object, before calling the Person’s
speak() function and then deallocating the Person object.

3. ImplementaNetflix class which holds Show objects in a “watching queue”.
The capacity cannot exceed 100.

class Netflix {
public:

private:
int num shows; // number of shows in queue
Show* queue[100];
int m capacity;
// Hint: you can use this function in cleanUp ()
void remove from queue (int index) {
delete queue[index];
for (int i1 = index; i < num shows - 1; i++) {
queue[i] = queue[i+l];
}

num_shows--;
bi

class Show {
public:

bool isWatched () {
return is watched;

}

string getName () {
return name;

}

private:
string name;
bool is watched;

Implement all of the functions highlighted in

1. Netflix (int capacity) -- declare a Netflix object with
a maximum capacity for number of shows in queue.

2. void watch(string name) -- tells the Netflix object
that you want to watch a particular show (as a result
when cleanUp is called, the show you watched should be
removed from the queue)

3. bool add(string name) -- add a new show to your queue.
If you the addition is successful (queue is not full),
return True, else return False.

4. void cleanUp() -- clean up the gqueue and remove all
shows that have been watched. Update the number of
shows to reflect this change

5. ~Netflix () —-- destructor, make sure you remember to use
delete everything you have created on the heap!
Show (string name) -- declare a Show object with a name
7. void watch () -- updates the Show object from unwatched

to watched. All shows are initially “unwatched”

Sample use case:
int main () {
Netflix n(3);
.add ("Stranger Things"); // returns True
.add ("The Office"); // returns True
.add ("Arrested Development"); // returns True
.add ("Sherlock"); // returns False
.watch ("The Office");
.cleanUp () ;
.add ("Sherlock"); // returns True

5 B8 3 8 B3 3 3

