Spring 2003 CS118 Computer Network Fundamentals

Instructor: Lixia Zhang (lixia@cs.ucla.edu)

- > Office: 4531G Boelter Hall
- > Office hours:
 - Tuesdays: 4:00-5:00pm
 - Thursdays: 1:00-2:00pm
 - Other times: appointment by email
- ➡ When email me: pls put cs118 in the subject line
- * TAs:
 - > Vasileios Pappas <vpappas@CS.UCLA.EDU>
 - > Jon Canan <jdcanan@cs.ucla.edu>
- Course homepage:

http://www.cs.ucla.edu/classes/spring03/cs118/

4/1/03

lixia@cs.ucla.edu

What this course is about

1

What are the underlying concepts and technologies that make the Internet run?

- First/introductory course in computer networking
 - Learn basic networking technologies & principles
 - > Develop network programming skills

Course Workload

Reading assignment for every lecture

- Weekly homework assignment
 - > Assigned every Thursday (except the 10th week)
 - > Due 6:00pm the following Thursday to TA's mailbox; homework solutions posted Friday morning.
- Two programming projects
 - > Check class website for details
- Midterm and final exams
- Last but not least: Classroom participation

4/1	/03

3

4

lixia@cs.ucla.edu

Grading breakdown

Homework: 20%
Projects: 30%
Midterm: 20%
Thursday, May 8th
Final exam: 30%
3:00-6:00PM, Saturday June 7th

Course Policies

no late turn-in is accepted for credit no make-up exams no misconduct

4/1/03

5

lixia@cs.ucla.edu

Lets have a shared understanding

- Why are you here?
- The goal in next 10 weeks
- ✤ What I can help
- Whose fault would it be, if you:
 - > failed to understand the lecture material

6

- > failed to turn in an assignment on time
- > fell to sleep in class
- > Missed one of the exams

Lecture Teaching

"Taking notes in class helps me understand better"

* So posted lecture notes will be like this

4/1/03

Part I: Introduction Assignment: Read chapter 1

Today's goal:

get context, overview, "feel" of networking
 more depth, detail *later* in course

Overview:

- what's the Internet
 - > network edge, network core, access net, physical media
- Circuit switching vs. packet switching
- Protocols, protocol layers
- Performance measure: data loss, delay

What's the Internet: "nuts and bolts" view

- hosts (end-systems):
 - pc's workstations, servers, PDA's phones, toasters..
 - Send/receive data, but do not forward
- Connected to *networks* made of
 - communication links
 - fiber, copper, radio, satellite
 - routers: forward chunks of data (packets) through a network
- running network applications
 - WWW, email, games, ecommerce, file sharing (MP3)

4/1/03

lixia@cs.ucla.edu

A closer look at network structure:

9

network edge: end systems (hosts)

- > run application programs at "edge of network"
- > client/server model

A closer look at network structure:

- network edge: end
 - systems (hosts)
 - run application programs at "edge of network"
 - > client/server model

access networks Physical media,

communication links

4/1/03

11

lixia@cs.ucla.edu

Access Networks

- Compus: local area network (LAN)
 Ethernet:10 Mbps, 100Mbps, Gigabit Ethernet
- * wireless LANs:
 - radio spectrum replaces wire
 - wider-area wireless access: CDPD—wireless access to Internet via cellular network

Dialup via modem, ADSL (asymmetric digital subscriber line)

A closer look at network structure:

- network edge: end systems (hosts)
 - run application programs at "edge of network"
 - client/server model
- access networks
 - Physical media, communication links

network core:

- > mesh of interconnected routers
- > network of networks
- <u>the fundamental question</u>: how is data transferred through the net?
 - Circuit switching
 - Packet switching

4/1/03

13

14

lixia@cs.ucla.edu

How multiple data transfers share the same network Circuit Switching vs. Packet Switching

Circuit switching

- dedicate link bandwidth & switch capacity to each "call"
- Requires call setup
- > Guaranteed performance

Packet switching

- > Packet: small chunks of data
- Send packets as soon as link available
- switch receives a full packet then forwards it towards the destination

Packet Switching: Statistical Multiplexing

Store-and-forward

* Packet switch can temporarily buffer up packets

- > Introduce *queueing delay*
- > Packets get *dropped* when the queue is full

Packet switching versus circuit switching

Example: how many users can share a 1 megabits/sec (1 Mbps) link?

 \rightarrow

- each user:
 - > 100,000 bits/sec when "active"
 - active 10% of time
- circuit-switching:
 - 10 users
- packet switching:
 - > 35 users: Prob.(n > 10) < 0.0004</p>

- How does a router figure out where to forward packets?
- * What if packets get lost? Or get garbled along the way?

4/1/03

17

lixia@cs.ucla.edu

1 Mbps link

Tentative Course Schedule:

- Introduction (2 lectures, textbook: Chapter 1)
- Network applications (3 lectures, Chapter 2)
 Socket programming (1 lecture)
- Transport protocols (3~4 lectures, Chapter 3)
 Midterm exam (in class)
- Network protocols (4 lectures, Chapter 4)
- Link Layer: LANs (3 lectures, Chapter 5)
- Network Security (1 lecture, Chapter 7)
- Review for final exam

Or more intuitively

What to do after this class

- Take a look at the course homepage
- * Finish reading assignment before next lecture
- Food for thought:
 - > What makes the Internet so popular these days?
 - > What's lay ahead?
- Interesting articles on Internet histories
 - Some Perspectives on Networks—Past, Present and Future" by Paul Baran, http://irl.cs.ucla.edu/papers/ifip.ps
 - http://www.isoc.org/internet-history

Packet Switched Networks

What's a protocol?

Organization of air travel

* a series of steps

Distributed implementation of layer functionality

Internet protocol stack

Protocol layering and data

Protocol header: one examples

Link layer: Ethernet frame format

Data Delivery Performance

* 3 basic measuremetns

4/1/03

Packet Losses

- Loss due to congestion
- Loss due to transmission errors
- wireless links

4/1/03

31

Example: one hop delay

total delay (A-B) = $1ms \times 2 + 1ms + 0.5ms = 3.5ms$

- Queuing delay =
- transmission delay =
- Propagation delay =

(2.0x10⁸ meters/sec in a fiber) 4/1/03

lixia@cs.ucla.edu

Network latency

Time to send a packet from point A to point B
 sum of delays across each hop along the path

RTT: round-trip-time

35

4/1/03

Packet-switching: store-and-forward

- Takes L/R seconds to transmit (push out) packet of L bits on to link of R bps
- Entire packet must arrive at router before it can be transmitted on next link: store and forward
- Ignore propagation delay

lixia@cs.ucla.edu

Packet-switching: store-and-forward

Example 2:

- A sends 5 packets to B
- L = 8000 bits, R = 2 Mbps
 > Ignore propagation delay
- How long does it take starting from A sending the first bit of first packet till B receives the last bit of the last packet?

lixia@cs.ucla.edu

Bandwidth, transmission delay, and propagation delay

37

(bandwidth × delay) product: amount of data "in-the-pipe"

Propagation delay= 10ms

Bandwidth= 1 Gbps

125KB data in the