What is a virtual circuit network?

l —
- — virtual cur‘cun‘
Networks

4/8/03 1 lixia@cs.ucla.edu

Chapter 2 outline

% 2.1 Principles of app layer P"O*OCO'S} Tue 478
% 2.2 Web and HTTP

2.3 FTP } Next week

< 2.4 Electronic Mail

<+ 2.5 DNS

% 2.6 Socket programming with TCP > Thu 4/10
% 2.7 Socket programming with UDP

< 2.8 Building a Web server

< 2.9 Content distribution
» Network Web caching

» Content distribution networks
» P2P file sharing

4/8/03 2 lixia@cs.ucla.edu

Applications and application-layer protocols
» Application

°,

application
ranspor
nefwork
data Tinl

- Application-layer protocols physicdl TR\

e

o

o

% Client:

reply
RE
application

transport
nefwork
ata fin

% Server & g physicd

Q: how does one process “identify” the other
process with which it wants to
communicate?

4/8/03 3 lixia@cs.ucla.edu

Network applications: some jargons

% Process: program running within a host.

< two processes within the same host communicate using
intferprocess communication (defined by operating system)

< Processes running in different hosts communicate through
an application-layer protocol

< user agent: software process.

> Web:browser

> E-mail: mail reader
% API: Application Programming Interface

> defines interface between application and ftransport layer
% socket: Internet API

> fTwo processes communicate by sending data into socket, reading
data out of socket

4/8/03 4 lixia@cs.ucla.edu

Internet transport protocols services
TCP service

< connection-oriented: setup
connection between client
and server first

< reliable data delivery
between the two ends

< flow control: sender won't

UDP service

< unreliable data transfer
between sending and
receiving process

<+ does not provide:
> connection setup

r > Reliability
overwhelm receiver > flow control
« congestion control: > congestion control
throttle sender when > timing, or
network overloaded > bandwidth guarantee

< does not provide:
> Timing
> bandwidth guarantees

4/8/03 5 lixia@cs.ucla.edu

World Wide Web

< Web page

% Object: HTML file, JPEG image, Java applet, audio file,...

< Each object is addressable by a URL (Universal resource
locator)
app://host_name:port#/path_and_file_name
ex: http://www.cs.ucla.edu/classes/spring03/cs118/slides.html
< Web browser: User agent for Web

% Web server:

4/8/03 6 lixia@cs.ucla.edu

The Web and http protocol

http: hypertext transfer
protocol

% client/server model
> client: browser that
requests, receives,
"displays” Web objects
> server: Web server
sends objects in
response to requests
< httpl.0: RFC 1945

% httpl.1: RFC 2068

4/8/03

S /77‘1-
re
PC running 4 ; Yesy
Explorer p ”esp
O/;Se

Server
running

NCSA Web
server
Mac running
Navigator
7 lixia@cs.ucla.edu

The http protocol: more

Use TCP transport service

4/8/03

http is "stateless”

< server maintains no
information about past
client requests

aside
Protocols that maintain “state”
are more complex!
past history (state) must be
maintained
if server/client crashes, their
views of “state” may be
inconsistent, must be reconciled

8 lixia@cs.ucla.edu

http example (cont.)

fetch www.someSchool.edu/someDepartment/home.index
(contains text, (efergnces to
time 10 jpeg images)

la. http client initiates TCP

connection to http server \ 1b. http server at host
(process) at ~A www.someSchool.edu waiting for
L~ TCP connection at port 80.

www.SomeSchool.edu “ " :
accepts” connection

2. http client sends http
request message (containing 3. http server receives request,
URL) into TCP connection socket ., forms response msg containing
requested object

)) " (someDepartment/home.index),
5. http client receives respons sends message into socket

message containing html file, 4
displays html. Parsing html file, |~ hitp server closes TCP conn.

finds 10 referenced jpeg objectsa”
6. Steps 1-5 repeated for each of 10| jpeg objects

v

4/8/03 9 lixia@cs.ucla.edu

Non-persistent, persistent connections
Non-persistent Persistent

< http/1.0: server parses « default for htp/1.1

request, responds, closes . 1 <ime TCP connection:
TCP connection

server parses request,

< 2 RTTs to fetch ObJCCT pespondsl parses new
> TCP connection request,..
> object + client sends requests for
request/transfer all referenced objects as
< many browsers open soon as it receives base
multiple parallel HTML.
connections <+ fewer RTTs

4/8/03 10 lixia@cs.ucla.edu

http message format: request

< two types of http messages: request, response

% http request message:
» ASCII (human-readable format)

request line
(GET, POST,\ GET /somedir/page.html HTTP/1.0
HEAD commands) User-agent: M021lla(4 .0 o .
Accept: text/html, image/gif,image/jpeg
header Accept-language: fr
lines

. extra carriage return, line feed
Carriage r‘e‘rur;n,/'(X 29 urn, 1)

line feed
indicates end
of message

4/8/03 11 lixia@cs.ucla.edu

http request message: general format

request
- line

header
lines

Entity Body

4/8/03 12 lixia@cs.ucla.edu

http message format: response

status line

(profocor\\\\\‘HTTpll.o 200 OK

status code Date: Thu, 06 Aug 1998 12:00:15 GMT
status phrase) Server: Apache/1.3.0 (Unix)
Last-Modified: Mon, 22 Jun 1998
. Content-Length: 6821
lines | content-Type: text/html

header

data data data data data ...

data, e.g., —
requested
html file

4/8/03 13 lixia@cs.ucla.edu

http response status codes

In first line in server->client response message.

A few sample codes:
200 OK

301 Moved Permanently

400 Bad Request

404 Not Found

505 HTTP Version Not Supported

4/8/03 14 lixia@cs.ucla.edu

User-server interactio

n: authentication

control access to the content

% authorization credentials:
typically name, password

+ stateless: client must
present authorization in
each request

> authorization: header line in
each request

> if no authorization: header,
server refuses access

—_

4/8/03

client

5

— usual http request msg

server

usual http request msg

401: authorization regq.

4| WWW authenticate:

+ Authorization: <cred> —»

usual http response msg (

usual http request msg
+ Authorization: <cred>

—»

4_] usual http response msg (Tiine

lixia@cs.ucla.edu

Cookies: keeping "state"

Many major Web sites use
cookies

Four components:

1) cookie header line in the
HTTP response message

2) cookie header line in HTTP
request message

3) cookie file kept on user's
host and managed by user's
browser

4) back-end database at Web
site

4/8/03

Example:

» Susan access Internet
always from same PC

lixia@cs.ucla.edu

Cookies: keeping "state" (cont.)

Cookie file

ebay: 8734

Cookie file

amazon: 1678
ebay: 8734

ohe week later:

Cookie file

amazon: 1678
ebay: 8734

4/8/03

client

Q‘l usual http request msg L, server o,
— &7

usual http response +

4| set-cookie: 1678

— usual http request msg
cookie: 1678

cookie- %
—> .acce

server

%

creates ID %%G ét?c,fe
1678 for user \ “

J usual http response msg (

— usual http request msg
cookie: 1678

specific
action

cookie-

4_1 usual http response msg (

spectific
action

lixia@cs.ucla.edu

Conditional GET: client-side caching

% Goal: don't send object
if client has up-to-date client

cached version —]

4/8/03

server
http request msg
If-modified-since: [—» ob'ec‘r
<date> J
not
http response modified
HTTP/1.0
304 Not Modified
http request msg
If-modified-since: .
<date> object
. modified

http response
4 HTTP/1.1 200 OK

<data>

lixia@cs.ucla.edu

Socket programming

=

controlled by

- process
application
developer = sockets
controlled by >
operating internet
system

—— socket
a host-local, application-created/owned, OS-controlled
interface (a "door") into which application process can both
send and receive messages to/from another (remote or
local) application process

Socket APT: Create Establish Send/recv close the
socket data socket

4/8/03 19 lixia@cs.ucla.edu

Socket functional calls

%+ socket (): Create a socket

bind(): bind a socket to a local IP address and port #
listen(): passively waiting for connections

connect(): initiating connection to another socket

% accept(): accept a new connection

% Write(): write data to a socket

Read(): read data from a socket

sendto(): send a datagram to another UDP socket

< recvfrom(): read a datagram from a UDP socket

% close(): close a socket (tear down the connection)

R

9
o

g

o
o

X3

*

X3

X3

9
o

g

o
o

4/8/03 20 lixia@cs.ucla.edu

10

Socket programming with TCP

Client must contact server

< When client creates

< server process must sockeft: client TCP
first be running establishes connection to
« server must have server TCP
created socket (door) & When contacted by client,
that welcomes client's server TCP creates new
contact socket for server process

to communicate with client

> allows server to talk
with multiple clients

Client contacts server by:
< creating client-local

TCP socket
+ specifying IP address, application viewpoint
port number of server TCP provides reliable, in-order
process transfer of bytes ("pipe”)
between client and server
4/8/03 21 lixia@cs.ucla.edu

Socket-programming using TCP
TCP service: reliable byte stream transfer

socket()
bind
. socket() lisTe(ng) server
client bind()
connect() P conn. request
accept()

Serld() <« TCPACK—

\ r'esv()

close() Send()

A b

recv()

controlled by

application]] process process
developer socket
controlled by T | TCP with| 4 » | TCP with
operating | |buffers, internet buffers
system & |variables var‘iable;
4/8/03 lixia@cs.ucla.edu

11

Client/server socket interaction: TCP

Server (running on hostid) Client

create socket,
port=x, for
incoming request:
welcomeSocket =
ServerSocket()
—>
wait for+ncoming <+ - _T.C_P — — —)p Create socket,
connection request connection setup = connect to hostid, port=x
connectionSocket = clientSocket =
welcomeSocket.accept() Socket()

¢ send request using

read request from / clientSocket

connectionSocket

1
v

write reply to \

connectionSocket » read reply from

* clientSocket
close
close *

connectionSocket

clientSocket

4/8/03 23 lixia@cs.ucla.edu

Socket-programming using UDP

UDP service: unreliable transfer of data blocks
from one process to another i
Fi)y

controlled by

application process application
developer developer
controlled by controlled by
i . operating
operating
system internet system

<*no handshaking
<sender explicitly attaches IP address and port of destination
<transmitted data may be received with bit error, out of order, or lost
application viewpoint
UDP provides unreliable transfer

of groups of bytes (“datagrams”)
between client and server

4/8/03 24 lixia@ecs.ucla.edu

controlled by

12

Client/server socket interaction: UDP

Server (running on hostid) Client

create socket, create socket,

.port=xl, for clientSocket =
incoming request: DatagramSocket()
serverSocket =
DatagramSocket()
—> Create, address (hostid, port=x,
/ send datagram request
read request from using clientSocket
serverSocket

write reply to

serverSocket \
. f » read reply from

specifying client

host address, clientSocket
port umber close *
I clientSocket
4803 25 lixia@cs.ucla.edu

Domain Name System

ro

— nlin
N NN AN AA

mit ucIa Xerox dec nasa nsf acm ieee

C seas cad

Foo Bar

4/8/03 26 lixia@cs.ucla.edu

13

DNS: Root name servers

% 13 root name servers

worldwide
> holding identical DNS
database DNS Root Servers
Designation, Responsibility, and Locations
o5 YOur‘ DNS quer‘y goeS o E-NASA Moffet Field CA INORDU Stocknolm

F-ISC Woodside CA P 1

local DNS server, for

names it cannot resolve,
it contact one of the ,uecves
root servers

% root name server:
> If it knOWS fhe exaci C-PSI Herndon VA
D-UMD Colle_ge F'!(MD
answer, reply S OISAUSC e deRey A i g e
. . L-DISA-USC Marina delRey CA J-NSF-NSI Herndon VA
> Otherwise reply with
the pointer to
another name server

A-NSF-NS| Herndon VA

4/8/03 27 lixia@cs.ucla.edu

DNS as a distributed database

< entire DNS name space is divided to a hierarchy
of zones
> zone: a continuous sub-space in the DNS name free
> a zone may contain domains at different levels

< each zone is controlled by an organization
< Each zone has its own name server(s)

foo.cs.ucla.edu
4/8/03 28 lixia@cs.ucla.edu

14

What's in the zone's master file:

data that defines the top node of the zone
> including a list all the servers for the zone
2. authoritative data for all nodes in the zone

> all RRs for all of the nodes from the top node to leaf
nodes(that are outside of any subzone)

3. data that describes delegated subzones
> Domain name, owner, etc

4. “glue data": IP address(es) for subzone's name
server(s)

—_

4/8/03 29 lixia@cs.ucla.edu

DNS example

host kiwi.ecs .ucla.edu wants I[P root name server

address of gaia.cs.umass.edu @

1. Contacts its local DNS server, 2 6
131.179.32.16 (dns.cs.ucla.edu) / :\
2.dns.cs.ucla.edu contacts root

name server, if necessary @ @

3. root name server contacts umass name

server, dns .umass . edu, if necessary, Al . | 4
local name server intermediate name server
4. dns.umass.edu contacts the

Lo 131.179.32.16 dns.umass.edu
authoritative name server,

4v 15
dns.cs.umass.edu, if necessary 1

8

authoritative name server
dns.cs.umass.edu

requesting host
kiwi.cs.ucla.edu

gaia.cs.umass.edu

4/8/03 30 lixia@cs.ucla.edu

15

DNS: iterated queries

recursive query:

< puts burden of name resolution
on contacted name server 2
% heavy load? 3

iterated query: @ — 4 5
41

root name server

< contacted server replies with 5

name of server to contact intermediate name server
dns.umass.edu

% "I don't know this name, but ask local name server
this server” 131.179.3I.16

:Elu‘rhorim‘rive name server
dns.cs.umass.edu

requesting host
kiwi.cs.ucla.edu |

4/8/03 31 lixia@cs.ucla.edu

DNS Performance

< Virtual each and all Internet applications
invoke DNS lookup

<use both replication and caching to improve
performance
> Each domain has one or more secondary servers

> servers cache recent query results

» buffer recently resolved names and addresses fill
their "time-to-live" expires

4/8/03 32 lixia@cs.ucla.edu

16

DNS records

DNS: distributed db storing resource records (RR)

RR format: (name, value, type, ttl)

Type=A Type=CNAME
name is hostname name is an alias name for
value is |IP address some “canonical” (the real)
name
L8 Typ€=N5 value is canonical name

> name is domain (e.g. foo.com)
> value is IP address of

authoritative name server for Type=MX
this domain value is hostname of mailserver
associated with name

4/8/03 33 lixia@cs.ucla.edu

DNS protocol, messages

DNS protocol : guery and reply messages, use same message format
msg header
identification: 16 bit # for query, reply to query uses same #

flags: query or reply
recursion desired T

recursion available decaten U
reply is authoritative

number of questions number of answer RRs 12 bytes

number of authority RRs | number of additional RRs

Name, type fields
for‘ a quer‘)"/’ {variable mjnﬂizl"?fgquegtionsj
RRs in response

\
TO query > (variable numbspz\;\’;rsgource records)
records for autorty

aufhorﬁ-a-ﬁve servers EE— {variable number of resource records)

additional information

addi.ﬁonal “helpful” /" {variable number of resource records)
info that may be used

4/8/03 34 lixia@cs.ucla.edu

17

How to use DNS in practice?

Two popular programs you can use:

% "host" - look up host names using domain servers
> Command: host [-1] [-v] [-w] [-r] [-d] [-t query type] host [server]
> Manual page: man host

< "nslookup” - query Internet name servers interactively

> Command: nslookup [-options...] [host-to-find | -[server]]
> Manual page: man nslookup

4/8/03 35 lixia@cs.ucla.edu

18

