

 1

4/8/03 lixia@cs.ucla.edu1

Telecommunication
networks

Circuit-switched
networks

FDM TDM

Packet-switched
networks

virtual circuit
Networks

Datagram
Networks

What is a virtual circuit network?

1
4 5

32

A B

4/8/03 lixia@cs.ucla.edu2

Chapter 2 outline
v 2.1 Principles of app layer protocols
v 2.2 Web and HTTP
v 2.3 FTP
v 2.4 Electronic Mail
v 2.5 DNS
v 2.6 Socket programming with TCP
v 2.7 Socket programming with UDP
v 2.8 Building a Web server
v 2.9 Content distribution
ÿ Network Web caching
ÿ Content distribution networks
ÿ P2P file sharing

Tue 4/8

Thu 4/10

Next week

 2

4/8/03 lixia@cs.ucla.edu3

Applications and application-layer protocols
v Application

v Application-layer protocols

v Client:

v Server

Q: how does one process “identify” the other
process with which it wants to
communicate?

application
transport
network
data link
physical

application
transport
network
data link
physical

reply

request

4/8/03 lixia@cs.ucla.edu4

Network applications: some jargons
v Process: program running within a host.
v two processes within the same host communicate using

interprocess communication (defined by operating system)
v Processes running in different hosts communicate through

an application-layer protocol
v user agent: software process.

ÿ Web:browser
ÿ E-mail: mail reader

v API: Application Programming Interface
ÿ defines interface between application and transport layer

v socket: Internet API
ÿ two processes communicate by sending data into socket, reading

data out of socket

 3

4/8/03 lixia@cs.ucla.edu5

Internet transport protocols services
TCP service
v connection-oriented: setup

connection between client
and server first

v reliable data delivery
between the two ends

v flow control: sender won’t
overwhelm receiver

v congestion control:
throttle sender when
network overloaded

v does not provide:
ÿ Timing
ÿ bandwidth guarantees

UDP service
v unreliable data transfer

between sending and
receiving process

v does not provide:
ÿ connection setup
ÿ Reliability
ÿ flow control
ÿ congestion control
ÿ timing, or
ÿ bandwidth guarantee

4/8/03 lixia@cs.ucla.edu6

World Wide Web
v Web page

v Object: HTML file, JPEG image, Java applet, audio file,…
v Each object is addressable by a URL (Universal resource

locator)
 app://host_name:port#/path_and_file_name

ex: http://www.cs.ucla.edu/classes/spring03/cs118/slides.html
v Web browser: User agent for Web

v Web server:

 4

4/8/03 lixia@cs.ucla.edu7

The Web and http protocol
http: hypertext transfer

protocol
v client/server model
ÿ client: browser that

requests, receives,
“displays” Web objects

ÿ server: Web server
sends objects in
response to requests

v http1.0: RFC 1945
v http1.1: RFC 2068

PC running
Explorer

Server
running

NCSA Web
server

Mac running
Navigator

http request

http
 request

http response

http
 response

4/8/03 lixia@cs.ucla.edu8

The http protocol: more
Use TCP transport service http is “stateless”

v server maintains no
information about past
client requests

Protocols that maintain “state”
are more complex!
past history (state) must be
maintained
if server/client crashes, their
views of “state” may be
inconsistent, must be reconciled

aside

 5

4/8/03 lixia@cs.ucla.edu9

http example (cont.)
fetch www.someSchool.edu/someDepartment/home.index

1a. http client initiates TCP
connection to http server
(process) at
www.SomeSchool.edu

2. http client sends http
request message (containing
URL) into TCP connection socket

1b. http server at host
www.someSchool.edu waiting for
TCP connection at port 80.
“accepts” connection

3. http server receives request,
forms response msg containing
requested object
(someDepartment/home.index),
sends message into socket

time
(contains text, references to

10 jpeg images)

4. http server closes TCP conn.

5. http client receives response
message containing html file,
displays html. Parsing html file,
finds 10 referenced jpeg objects

6. Steps 1-5 repeated for each of 10 jpeg objects

4/8/03 lixia@cs.ucla.edu10

Non-persistent, persistent connections
Non-persistent
v http/1.0: server parses

request, responds, closes
TCP connection

v 2 RTTs to fetch object
ÿ TCP connection
ÿ object

request/transfer
v many browsers open

multiple parallel
connections

Persistent
v default for htp/1.1
v on same TCP connection:

server parses request,
responds, parses new
request,..

v client sends requests for
all referenced objects as
soon as it receives base
HTML.

v fewer RTTs

 6

4/8/03 lixia@cs.ucla.edu11

http message format: request
v two types of http messages: request, response
v http request message:
ÿ ASCII (human-readable format)

GET /somedir/page.html HTTP/1.0
User-agent: Mozilla/4.0
Accept: text/html, image/gif,image/jpeg
Accept-language:fr

(extra carriage return, line feed)

request line
(GET, POST,

HEAD commands)

header
 lines

Carriage return,
line feed

indicates end
of message

4/8/03 lixia@cs.ucla.edu12

http request message: general format

 7

4/8/03 lixia@cs.ucla.edu13

http message format: response

HTTP/1.0 200 OK
Date: Thu, 06 Aug 1998 12:00:15 GMT
Server: Apache/1.3.0 (Unix)
Last-Modified: Mon, 22 Jun 1998 …...
Content-Length: 6821
Content-Type: text/html

data data data data data ...

status line
(protocol

status code
status phrase)

header
 lines

data, e.g.,
requested
html file

4/8/03 lixia@cs.ucla.edu14

http response status codes

200 OK

301 Moved Permanently

400 Bad Request

404 Not Found

505 HTTP Version Not Supported

In first line in server->client response message.
A few sample codes:

 8

4/8/03 lixia@cs.ucla.edu15

User-server interaction: authentication
control access to the content
v authorization credentials:

typically name, password
v stateless: client must

present authorization in
each request
ÿ authorization: header line in

each request
ÿ if no authorization: header,

server refuses access

client server
usual http request msg

401: authorization req.
WWW authenticate:

usual http request msg
+ Authorization: <cred>

usual http response msg

usual http request msg
+ Authorization: <cred>

usual http response msg time

4/8/03 lixia@cs.ucla.edu16

Cookies: keeping “state”
Many major Web sites use

cookies
Four components:

1) cookie header line in the
HTTP response message

2) cookie header line in HTTP
request message

3) cookie file kept on user’s
host and managed by user’s
browser

4) back-end database at Web
site

Example:
ÿ Susan access Internet

always from same PC

 9

4/8/03 lixia@cs.ucla.edu17

Cookies: keeping “state” (cont.)

client server
usual http request msg

usual http response +
Set-cookie: 1678

usual http request msg
cookie: 1678

usual http response msg

usual http request msg
cookie: 1678

usual http response msg

cookie-
specific
action

cookie-
spectific

action

server
creates ID

1678 for user

entry in backend

database

access

ac
ce

ss

Cookie file

amazon: 1678
ebay: 8734

Cookie file

ebay: 8734

Cookie file

amazon: 1678
ebay: 8734

one week later:

4/8/03 lixia@cs.ucla.edu18

client server
http request msg

If-modified-since:
<date>

http response
HTTP/1.0

304 Not Modified

object
not

modified

http request msg
If-modified-since:

<date>

http response
HTTP/1.1 200 OK

<data>

object
modified

Conditional GET: client-side caching
v Goal: don’t send object

if client has up-to-date
cached version

 10

4/8/03 lixia@cs.ucla.edu19

Socket programming

Socket API:

a host-local, application-created/owned, OS-controlled
interface (a “door”) into which application process can both
send and receive messages to/from another (remote or
local) application process

socket

controlled by
application
developer

controlled by
operating

system

process
socket

process
socket

internet

Create
socket

Establish
connection

Send/recv
data

close the
socket

4/8/03 lixia@cs.ucla.edu20

Socket functional calls
v socket (): Create a socket
v bind(): bind a socket to a local IP address and port #
v listen(): passively waiting for connections
v connect(): initiating connection to another socket
v accept(): accept a new connection
v Write(): write data to a socket
v Read(): read data from a socket
v sendto(): send a datagram to another UDP socket
v recvfrom(): read a datagram from a UDP socket
v close(): close a socket (tear down the connection)

 11

4/8/03 lixia@cs.ucla.edu21

Socket programming with TCP
Client must contact server
v server process must

first be running
v server must have

created socket (door)
that welcomes client’s
contact

Client contacts server by:
v creating client-local

TCP socket
v specifying IP address,

port number of server
process

v When client creates
socket: client TCP
establishes connection to
server TCP

v When contacted by client,
server TCP creates new
socket for server process
to communicate with client
ÿ allows server to talk

with multiple clients

TCP provides reliable, in-order
 transfer of bytes (“pipe”)
between client and server

application viewpoint

4/8/03 lixia@cs.ucla.edu22

Socket-programming using TCP
TCP service: reliable byte stream transfer

process

TCP with
buffers,
variables

socket

controlled by
application
developer

controlled by
operating

system

process

TCP with
buffers,
variables

socket

internet

client
serversocket()

bind()
connect()

socket()
bind()
listen()

accept()
send()

recv()

close() close()

recv()
send()

TCP conn. request
TCP ACK

 12

4/8/03 lixia@cs.ucla.edu23

Client/server socket interaction: TCP

wait for incoming
connection request
connectionSocket =
welcomeSocket.accept()

create socket,
port=x, for
incoming request:
welcomeSocket =

ServerSocket()

create socket,
connect to hostid, port=x
clientSocket =

Socket()

close
connectionSocket

read reply from
clientSocket

close
clientSocket

Server (running on hostid) Client

send request using
clientSocketread request from

connectionSocket

write reply to
connectionSocket

TCP
connection setup

4/8/03 lixia@cs.ucla.edu24

Socket-programming using UDP
UDP service: unreliable transfer of data blocks

from one process to another

process

UDP with
buffers,
variables

socket

controlled by
application
developer

controlled by
operating

system

process

UDP with
buffers,
variables

socket

controlled by
application
developer
controlled by
operating
systeminternet

vno handshaking
vsender explicitly attaches IP address and port of destination
vtransmitted data may be received with bit error, out of order, or lost

application viewpoint
UDP provides unreliable transfer
 of groups of bytes (“datagrams”)

 between client and server

 13

4/8/03 lixia@cs.ucla.edu25

Client/server socket interaction: UDP

close
clientSocket

Server (running on hostid)

read reply from
clientSocket

create socket,
clientSocket =
DatagramSocket()

Client

Create, address (hostid, port=x,
send datagram request
using clientSocket

create socket,
port=x, for
incoming request:
serverSocket =
DatagramSocket()

read request from
serverSocket

write reply to
serverSocket
specifying client
host address,
port umber

4/8/03 lixia@cs.ucla.edu26

Domain Name System

edu com gov org us uk fr

mit ucla xerox dec nasa nsf acm ieee

cs seas cad

...

.....

.....

root
TLD (top level
domains)

Foo Bar

 14

4/8/03 lixia@cs.ucla.edu27

DNS: Root name servers
v 13 root name servers

worldwide
ÿ holding identical DNS

database
v Your DNS query goes to a

local DNS server, for
names it cannot resolve,
it contact one of the
root servers

v root name server:
ÿ If it knows the exact

answer, reply
ÿ Otherwise reply with

the pointer to
another name server

4/8/03 lixia@cs.ucla.edu28

DNS as a distributed database
v entire DNS name space is divided to a hierarchy

of zones
ÿ zone: a continuous sub-space in the DNS name tree
ÿ a zone may contain domains at different levels

v each zone is controlled by an organization
v Each zone has its own name server(s)

.edu

ucla.edu

cs.ucla.edu

foo.cs.ucla.edu

root

 15

4/8/03 lixia@cs.ucla.edu29

cs.ucla.edu

ucla.edu

What's in the zone's master file:
1. data that defines the top node of the zone
ÿ including a list all the servers for the zone

2. authoritative data for all nodes in the zone
ÿ all RRs for all of the nodes from the top node to leaf

nodes(that are outside of any subzone)
3. data that describes delegated subzones
ÿ Domain name, owner, etc

4. “glue data”: IP address(es) for subzone's name
server(s)

4/8/03 lixia@cs.ucla.edu30

DNS example

requesting host
kiwi.cs.ucla.edu

gaia.cs.umass.edu

root name server

local name server
131.179.32.16

1

2
3

4 5

6

authoritative name server
dns.cs.umass.edu

intermediate name server
dns.umass.edu

7

8

host kiwi.cs.ucla.edu wants IP
address of gaia.cs.umass.edu
1. Contacts its local DNS server,
131.179.32.16 (dns.cs.ucla.edu)
2. dns.cs.ucla.edu contacts root
name server, if necessary
3. root name server contacts umass name
server, dns.umass.edu, if necessary
4. dns.umass.edu contacts the
authoritative name server,
dns.cs.umass.edu, if necessary

 16

4/8/03 lixia@cs.ucla.edu31

DNS: iterated queries
recursive query:
v puts burden of name resolution

on contacted name server
v heavy load?

iterated query:
v contacted server replies with

name of server to contact
v “I don’t know this name, but ask

this server”

requesting host
kiwi.cs.ucla.edu

gaia.cs.umass.edu

root name server

local name server
131.179.32.16

1

2
3

4

6
7

authoritative name server
dns.cs.umass.edu

intermediate name server
dns.umass.edu

5

8

4/8/03 lixia@cs.ucla.edu32

DNS Performance
vVirtual each and all Internet applications

invoke DNS lookup
vuse both replication and caching to improve

performance
ÿ Each domain has one or more secondary servers
ÿ servers cache recent query results
ß buffer recently resolved names and addresses till

their “time-to-live” expires

 17

4/8/03 lixia@cs.ucla.edu33

DNS records
DNS: distributed db storing resource records (RR)

v Type=NS
ÿ name is domain (e.g. foo.com)
ÿ value is IP address of

authoritative name server for
this domain

RR format: (name, value, type, ttl)

Type=A
name is hostname
value is IP address

Type=CNAME
name is an alias name for
some “canonical” (the real)
name
value is canonical name

Type=MX
value is hostname of mailserver
associated with name

4/8/03 lixia@cs.ucla.edu34

DNS protocol, messages

Name, type fields
 for a query

RRs in response
to query

records for
authoritative servers

additional “helpful”
info that may be used

DNS protocol : query and reply messages, use same message format
msg header

identification: 16 bit # for query, reply to query uses same #

flags: query or reply
 recursion desired
 recursion available
 reply is authoritative

 18

4/8/03 lixia@cs.ucla.edu35

How to use DNS in practice?
Two popular programs you can use:
v “host” – look up host names using domain servers

ÿ Command: host [-l] [-v] [-w] [-r] [-d] [-t query type] host [server]
ÿ Manual page: man host

v “nslookup” – query Internet name servers interactively
ÿ Command: nslookup [-options…] [host-to-find | –[server]]
ÿ Manual page: man nslookup

