
1

ftp: File Transfer Protocol

v ftp specification: RFC 959 (http://www.ietf.org/rfc/rfc959.txt)

file transfer FTP
server

FTP
user

interface

FTP
client

local file
system

remote file
system

user
at host

data connection management

2

ftp commands, responses
over 30 are available
v sent as ASCII text over control conn.
v authentication: user, pass
v file access: e.g. put, get
v file transfer control: mode
v directory: pwd, list, delete
v ftp session: help, stat, abort, quit
Sample commands:
v USER username
v PASS password
v LIST: return list of file in the

current directory
v RETR filename: retrieves (gets)

file
v STOR filename: stores (puts) file

onto remote host

Sample return codes
v status code and phrase (as in http)
v 331 Username OK, password

required
v 125 data connection already

open; transfer starting
v 425 Can’t open data

connection
v 452 Error writing file

Electronic Mail
Three major components:
v user agents
v mail servers
v simple mail transfer protocol(smtp)

User Agent
v composing, editing, reading mail msgs

ÿ Eudora, Outlook, elm, Netscape
Messenger

v outgoing, incoming messages stored on
server

Mail Servers
v mailbox contains incoming messages

(yet to be read) for user
v message queue of outgoing (to be sent)

mail messages
SMTP protocol between mail servers

user mailbox

outgoing
message queue

mail
server

user
agent

user
agent

user
agent

mail
server

user
agent

user
agent

mail
server

user
agent

SMTP

SMTP

SMTP

3

application layer SMTP server

port 25

socket

data

how a sender contacts a SMTP server

van SMTP server process running on every
SMTP server host, waiting for incoming mail
vTCP port# (25) is permanently assigned to

SMTP (“well-known port”)
vsender opens a TCP connection to the dest.

mailman.cs.ucla.edu

SMTP
daemon

user user
agent

TCP port 25

sender

Your email application program

User
mailbox

SMTP
daemon

mail server

SMTP

Email delivery

SMTP

mail server

user user
agent

receiver
POP

4

Simple Mail Transfer Protocol [RFC 821]

Sample smtp interaction

 S: 220 hamburger.edu
 C: HELO crepes.fr
 S: 250 Hello crepes.fr, pleased to meet you
 C: MAIL FROM: <alice@crepes.fr>
 S: 250 alice@crepes.fr... Sender ok
 C: RCPT TO: <bob@hamburger.edu>
 S: 250 bob@hamburger.edu ... Recipient ok
 C: DATA
 S: 354 Enter mail, end with "." on a line by itself
 C: Do you like ketchup?
 C: How about pickles?
 C: .
 S: 250 Message accepted for delivery
 (if more msgs to send, start from "MAIL FROM" again)
 C: QUIT
 S: 221 hamburger.edu closing connection

5

A typical SMTP message exchange (after the TCP connection setup)

sender SMTP process receiver SMTP
process 220 whitehouse.gov SMTP ready

HELO foo.berkeley.edu

250 whitehouse.gov
MAILFROM:<john@foo.berkeley.edu>

250 OK

RCPT TO: <clinton@whitehouse.gov>

250 OK

RCPT TO: <al@whitehouse.gov>

550 No such user

DATA
354 start mail input

blah blah blah

<CRLF>.<CRLF>
250 OK

QUIT

221 whitehouse.gov service closing

Code meaning
220 service ready
221 I’m closing too
250 requested action OK
500 error, command not recognized
550 no such mbox, no action taken

Are there some basic rules behind the reply codes?

Common practices
1st digit: whether response is good/bad/incomplete

e.g. 2= positive completion, 5=negative completion
2nd digit: encodes responses in specific categories

e.g. 2=connections, 5=mail system (status of the receiver mail
system)

3rd digit: a finer gradation of meaning in each category specified by
the 2nd digit.

6

smtp: final words
v smtp uses persistent

connections
v smtp requires that message

(header & body) be in 7-bit ascii
v certain character strings are

not permitted in message (e.g.,
CRLF.CRLF). Thus message
body must be encoded if it
contains forbidden characters

v smtp server uses CRLF.CRLF to
determine end of message

Comparison with http

v http: pull
v email: push

v both have ASCII
command/response interaction,
status codes

v http: each object is
encapsulated in its own
response message

v smtp: multiple objects message
sent in a multipart message

Mail message format
RFC 821: SMTP specification

(protocol for exchanging email
msgs)

RFC 822: standard for text
message format:

v header lines, e.g.,
ÿ To:
ÿ From:
ÿ Subject:
different from smtp commands!

v body
ÿ the “message”, ASCII characters

only

header

body

blank
line

7

Message format: extension for multimedia
MIME: Multipurpose Internet Mail Extension
v additional lines in msg header declare MIME content type

From: alice@crepes.fr
To: bob@hamburger.edu
Subject: Picture of yummy crepe.
MIME-Version: 1.0
Content-Transfer-Encoding: base64
Content-Type: image/jpeg

base64 encoded data
.........................
......base64 encoded data

multimedia data
type, subtype,

parameter declaration

method used
to encode data

MIME version

encoded data

Mail access protocols

Mail access protocol: retrieval from mail server
v POP: Post Office Protocol [RFC 1939]
ÿ authorization (agent <-->server) and download

v IMAP: Internet Mail Access Protocol [RFC 1730]
ÿ more features, such as msg folders on the server
ß more complex implementation

ÿ manipulation of stored msgs on server
v HTTP: Hotmail , Yahoo! Mail, etc.

user
agent

sender’s mail
server

user
agent

SMTP SMTP POP3 or
IMAP

receiver’s mail
server

8

POP3 protocol
authorization phase
v client commands:
ÿ user: declare

username
ÿ pass: password

v server responses
ÿ +OK
ÿ -ERR

transaction phase,
client:

v list: list message
numbers

v retr: retrieve message
by number

v dele: delete
v quit

 C: list
 S: 1 498
 S: 2 912
 S: .
 C: retr 1
 S: <message 1 contents>
 S: .
 C: dele 1
 C: retr 2
 S: <message 1 contents>
 S: .
 C: dele 2
 C: quit
 S: +OK POP3 server signing off

S: +OK POP3 server ready
C: user alice
S: +OK
C: pass hungry
S: +OK user successfully logged on

telnet (RFC854)
v A TCP connection used to transmit data with interspersed

TELNET control information
v Client side of the TCP connection initiates a request, the

server accepts or rejects the request.
v Telnet server uses port# 23

ÿ the client side can use any unreserved port.

Internet

User's
key board
& display

telnet
client

operating
system

operating
system

application
process

9

client-server paradigm
v any program can become a network application

client when it needs network services
v servers are special purpose applications dedicated

to providing specific service
ÿ server processes start at system initialization time

v applications at both ends take initiative
ÿ server application informs local OS that it is ready to

take incoming messages
ß wait for incoming messages
ß perform requested service
ß return results

ÿ client application contacts the server
ß send request
ß wait for reply

identifying servers and services
v each service is assigned a unique well-known port

number

v server application process registers with local
protocol software with that port #

v a client requests a service by sending request to a
specific server host with the well-known port #

v server handles multiple requests concurrently

10

Chapter 3: Transport Layer
Chapter goals:
v Principles behind transport layer services:

ÿ multiplexing/demultiplexing
ÿ reliable data transfer
ÿ flow control
ÿ congestion control

v instantiation and implementation in the Internet
Chapter Overview:
v transport layer services; multiplexing/demultiplexing
v connectionless transport: UDP
v connection-oriented transport: TCP

ÿ How to achieve reliable data delivery
v TCP congestion control

Transport services and protocols
v data delivery between app’

processes running on
different hosts

v transport vs network layer
services:

Internet transport services:
v unreliable, unordered delivery:

UDP

v reliable, in-order delivery(TCP)

application
transport
network
data link
physical

application
transport
network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physicalnetwork

data link
physical

logical end-end transport

11

application
transport
network

Multiplexing/demultiplexing

data segments from multiple
app processes is sent to
lower layer for transmission

Multiplexing
delivering received data
segments to corresponding
upper layer protocols/apps

Demultiplexing

application
transport
network

receiver

Ht
Hn segment

segment M

P1
M

M M
P3 P4transport

header

Application data

M
P2

sender

Some
other
host

Multiplexing/demultiplexing: examples

host A server B
source port: x
dest. port: 23

source port:23
dest. port: x

port use: simple telnet app

Web client
host A

Web
server B

Web clients
host C

Source IP: C
Dest IP: B

sour port:1180
dest. port: 80

Source IP: C
Dest IP: B

sour port:2211
dest. port: 80

port use: Web server

Source IP: A
Dest IP: B

sour port:1180
dest. port: 80

12

UDP: User Datagram Protocol [RFC 768]
v “best effort” service: UDP segments may be lost,

or delivered out of order to applications
v connectionless:

source port # dest port #

32 bits

Application
data

(message)

length checksum
Length of UDP

segment (in bytes),
including header

UDP format

UDP checksum

Sender:
v treat data in the segment as

sequence of 16-bit integers
v checksum: addition (1’s

complement sum) of segment
contents

v puts checksum value into UDP
checksum field

Receiver:
v compute checksum of received

segment
v check if computed checksum equals

checksum field value:
ÿ NO - error detected
ÿ YES - no error detected

Goal: detect bit errors (e.g., flipped bits) in transmitted segment

13

Internet checksum algorithm

v used in IP, TCP, UDP
v sender:
ÿ consider the data block as 16xn matrix
ÿ add all data together using 16-bit one’s

complement arithmetic
ÿ take the one’s complement of the result

v receiver
ÿ add all bytes together, including the checksum

field
ÿ if sum=0, no bit error

U_short checksum(u_short *buf, int length)
{
 unsigned long sum = 0;
 if (length % 2) {

/* pad the data length to be an even number of bytes */
length += 1;
}

 length >>= 1;
 while (length--) {

sum += *buf++;
if (sum & 0xFFFF0000) { /*carry occurred, wrap around */

 sum &= 0xFFFF);
 sum++;
 }
 }
return (~sum & 0xFFFF);

 }

checksum computation: Sample code

