
1

Aggregates in Logic

Carlo Zaniolo,

Computer Science Department

UCLA



User-Defined Aggregates 2

DBMSs’ Support for Aggregates

• Only five aggregates in SQL2

• Vendors have added new builtins for data mining—e.g. rollups,
datacubes, aggregates for time series

• these are never enough: User-Defined Aggregates (UDAs)
are needed

• UDAs are in SQL3, but problems remain and not supported by
vendors.



User-Defined Aggregates 3

More Flexible UDAs

• Currently aggregates are totally batch-oriented. For instance Find
cities where more than 20 employees live can easily expressed
with COUNT .

But then SQL counts all the 10,000 employees in LA, before check-
ing that this number is larger than 20

• A small percentage of data is often sufficient for a good estimate of
averages. They propose the concept of on-line aggregation to solve
this problem [Hellerstein, Hass and Wang]

• To solve this problem we introduce early returns in our UDAs.

• The Nonmonotonicity issue.



User-Defined Aggregates 4

NonMonotonicity

• COUNT: find the suppliers who DO NOt supply red parts ↔
find suppliers where the count of parts they supply is zero.

MAX andMIN: the highest paid employee is the one for which there
is no employee with higher salary.

• Recursive queries are now supported in O/R Databases using tech-
niques and semantics adapted from Deductive Databases: differen-
tial fixpoint, magic sets, stratified negation and aggregates.

• SQL queries must be stratified w.r.t. negation and ag-
gregates (SQL3).



User-Defined Aggregates 5

A Logical Recostruction of Aggregates

Inductive Definition of Aggregates

1. BASE For a singleton set: count({x}) = 1; sum({x}) = x;
max({x}) = x

2. INDUCTION sum(St{x}) = sum(S)+x; count(St{x}) =
sum(S) + 1
max(S t {x}) = ifx > max(S) then x else max(S).

3. These computations can be easily expressed by logical rules (e.g.,
the single and multi rules in LDL++)

4. Early returns and Final returns can also be expressed by rules: e.g.,
Avg= Sum/Count But we need to enumerate the elements of a set.



User-Defined Aggregates 6

Stable Models and Choice Models

• NonMonotonic Reasoning in AI, 30 years of progress: from circum-
scription to stable models.

• But nondetermism is also an essential facet of stable models. The
following programs has dual models.

a← ¬b. b← ¬a.

• Positive programs with choice can be rewritten as equivalent pro-
grams with negated goals displaying a multiplicity of stable models.

advisor(St, Prof)← student(St, Maj),
professor(Prof, Maj), choice((St), (Prof)).

• Theorem [PGZ]: Positive programs with choice define nondeter-
ministic monotonic mappings.



User-Defined Aggregates 7

Aggregate Definition in LDL++

Standard Average:

single(avg, Y, (Y, 1)).
multi(avg, Y, (Sum, Count), (Sum + Y, Count + 1)).
freturn(avg, Y, (Sum, Count), Avg) ← Avg = Sum/Count.

On line average: returns a value every 100 samples.

ereturn(avg, X, (Sum, Count), Avg)← Count mod 100 = 0, Avg = Sum/Count.

Using the aggregate remains the same:

p(DeptNo, avg〈Sal〉)← empl(Ename, Sal, DeptNo).



User-Defined Aggregates 8

Aggregates Formal Definition

p(avg〈Y〉)← d(Y).

We replace this by

p(Y)← results(avg, Y).

where results(avg, Y) is derived from d(Y) by

• the chain rules,

• the cagr rules and

• thereturn rules.



User-Defined Aggregates 9

Aggregates: Definition

The chain rules are those with choice that place the elements of d(Y)
into an order-inducing chain.

Then, the cagr rules perform the inductive computation by calling
the single and multi rules as follows:

cagr(AgName, Y, New)← chain(nil, Y), Y 6= nil, single(avg, Y, New).
cagr(AgName, Y2, New)← chain(Y1, Y2), cagr(AgName, Y1, Old),

multi(AgName, Y2, Old, New).

Thus, the cagr rules are used to memorize the previous results, and
to apply (i) single to the first element of d(Y) (i.e., for the pattern
chain(nil, Y)) and (ii) multi to the successive elements. The return



User-Defined Aggregates 10

rules are as follows:

results(AgName, Yield)← chain(Y1, Y2), cagr(AgName, Y1, Old),
ereturn(AgName, Y2, Old, Yield).

results(AgName, Yield)← chain(X, Y),¬chain(Y, ),
cagr(AgName, Y, Old),
freturn(AgName, Y, Old, Yield).

Therefore we first compute chain, and then cagr that applies the
single and multi to every element in the chain.

Concurrently, the first results rule produces all the results that can
be generated by the application of ereturn to each element of the
chain.



User-Defined Aggregates 11

Monotonic Aggregates

The final returns are computed by the second results rule that cals
freturn once the last element in the chain (i.e., the element without
successors) is detected.

This is the only rule using negation; in the absence of freturn this rule
can be removed yielding a positive choice program that is monotonic!

Thus every aggregate with only early returns is monotonic with re-

spect to set-containment and can be used freely in recursive rules.
monotonic aggregates

To define a new aggregate, the user must write the single, multi,
ereturn and freturn rules; the remaining rules are built in the sys-
tem.



User-Defined Aggregates 12

Monotonic Aggregates: no freturn

Continuous count:

single(mcount, Y, 1).
multi(mcount, Y, Old, New)← New = Old + 1.
ereturn(mcount, Y, Old, New)← Old = nil, New = 1

ereturn(mcount, Y, Old, New)← Old 6= nil, New = Old + 1.

You can define msum in a similar fashion.



User-Defined Aggregates 13

mcount and msum

• Say that instead of count and sum we use mcount, msum, which
returns a new partial count or sum for each new element in the set.

• Thus for a set of cardinality 5 mcount returns: 1, 2, 3, 4, 5.

• If we add a new element to the set mcount returns: 1, 2, 3, 4, 5, 6.

• mcount is monotonic and deterministic. But msum is a nondeter-
ministic (i.e., multivalued) monotonic mapping

• New aggregates are conducive to more efficient algorithms.



User-Defined Aggregates 14

Monotonic Aggregates—Applications

The query,‘Find all departments with more than 7 employees” can
be expressed as follows:

count emp(D#, mcount〈E#〉)← emp(E#, Sal, D#).
large dept(D#)← count emp(D#, Count), Count = 7.

Find all departments with less than 7 employees:

small dept(D#, Dname)← dept(D#, Dname),¬large dept(D#).



User-Defined Aggregates 15

Monotonic Aggregates—Applications

Join the party: Some people will come to the party no matter what,
and their names are stored in a sure(Person) relation. But others
will join only after they know that at least K = 3 of their friends will
be there. Here, friend(P, F) denotes that F is P’s friend.

willcome(P)← sure(P).
willcome(P)← c friends(P, K), K >= 3.
c friends(P, mcount〈F〉)← willcome(F), friend(P, F).



User-Defined Aggregates 16

sure(mark).
sure(tom).
sure(jane).

friend(jerry, mark).
friend(penny, mark).
friend(jerry, jane).
friend(penny, jane).
friend(jerry, penny).
friend(penny, tom).

Basic semi-naive computation yields:

willcome(mark).
willcome(tom).
willcome(jane).

c friends(jerry, 1).
c friends(penny, 1).
c friends(jerry, 2).
c friends(penny, 2).
c friends(penny, 3).

willcome(penny).

c friends(jerry, 3).

willcome(jerry).


