Extending SQL for Decision Support
Applications

Carlo Zaniolo*

A

*Course Notes for CS240B

Outline

The problem and the state of the art
Introduction to ATLaS
Decision support applications

Part IV The System and Performance
Part V Conclusions and future directions.

. UCLA —p.2/22

Part I: The Problem

* Databases: where the data is (well most of it)

* But Database Management Systems (DBMSs) do not
support well data mining tasks

* Desiderata: Data Mining Query Languages that support
ad-hoc mining queries and general data mining

. UCLA —p.3/22

DBMSs and Data Mining

~ * Many proposals, including:

« DMQL [Han, Fu, Wang, Koperski, Zaiane:
DMDW 1996]

* Mine operator [Meo, Psalla, Ceri. 1996]
* M-SQL [Imielinski, Virmani: 1999]
* Difficult technical challenges:

* No natural way to retrofit SQL with mining
operators—as opposed to ROLAP extensions
that naturally fit in the (super)group-by syntax

* Implementation and Performance issues

* Much diversity in mining tasks: Can one
solution fit all?

UCLA —p.4/22

Data Mining in Object-Oriented
DBMSs

S. Sarawagi, S. Thomas,R. Agrawal: Integrating Association
Rule Mining with Relational Database Systems: Alternatives
and Implications,SIGMOD 1998

The Question: forget nice SQL extensions, and ask if
experts can implement Apriori efficiently in an
Object-Relational System such as DB2. An the answer was:

* Not easily: UDFs are very difficult to write and debug
* Not as efficient as Cache Mining approaches

Apriori established as the acid test for the extensibility of
DBMSs for data mining tasks.

Next Question: is SQL the real cause of these problems and
should we instead use other languages for database centric
datamining?

UCLA —p.5/22

Replacing SQL with Better
Languages for Mining Databases

* The DATASIFT project uses the logical data
language £DL++ to address these problems
[Glannotti, Manco, et al. 1999, 2000]

* Both deductive and inductive reasoning needed
to support the data mining process

* LDL++ Is Turing complete and supports User
Defined Aggregates (UDAS)

* Direct C++ implementation of UDAs to solve
performance problems

* New Datamining Algebras: The 3W Model
[Johnson, Lakshmanan, Ng: VLDB 2000]

UCLA —p.6/22

Part Il: Introducing ATLaS

. History and main ideas

2. Simple examples: average, minpoints, temporal
coalescing after projetion

3. Transitive closure computation

UCLA —p.7/22

A Brief History of ATLaS

. SQL-AG: extending SQL3 proposal for

Aggregates to support ‘early returns’ [1999]

. LDL++ 5.1: Logic Database Language Monotonic

Aggregates: used freely in recursive queries for
BoM and greedy algorithms [1999]

. SADL: Simple Aggregate Definition Language

based on SQL. easy to use, but with limited
performance and power [2000]

. AXL: Aggregate eXtension Language: Much more

powerful and efficient [2001]

. ATLaS: table functions and in-memory tables with

references [2002]

. ATLaS: table functions and support for the

definition and management of in-memory data
structures using SQL [2003]

UCLA —p.8/22

ATLaS Main Ideas

* Tables as the only data type
* SQL statements as the only statements

* Native Extensibility by letting users introduce new
Aggregates and Table functions by coding them in
SQL

. UCLA —p.9/22

Defining Aggregates

ggregates are functions that process a stream of
values, on the basis of whether the current item is

* The first value—INITIALIZE state,
* Every other successive value—ITERATE state,
* The EOF marker—TERMINATE state

* The calling query generates the streams—one for
each Grour BY— and set the states

This way of defining UDAs is similar to that used by
Postgres, LDL++, SQL3, etc.

ATLaS aggregates take streams as input but also re-
turn streams as output (e.g., online aggregates)

UCLA —p.10/22

Example: Define Average

AGGREGATE myavg(Next Int) ;. Real
{ TABLE state(sum Int, cnt Int);
INITIALIZE : {
INSERT INTO state VALUES (Next, 1);
}
ITERATE : {
UPDATE state SET sum=sum+Next, cnt=cnt+1;
}
TERMINATE : {
INSERT INTO RETURN
SELECT sum/cnt FROM state;

}
}

UCLA —p.11/22

OnLine Averages

AGGREGATE online_avg(Next Int) ;. Real
{ TABLE state(sum Int, cnt Int);

INITIALIZE : {
INSERT INTO state VALUES (Next, 1);

;

ITERATE : {
UPDATE state SET sum=sum+Next, cnt=cnt+1;
INSERT INTO RETURN
SELECT sum/cnt FROM state
WHERE cnt % 200 = 0O;

;

TERMINATE : {

}

. UCLA —p.12/22

Calling UDAs

SELECT Sex, online_avg(Sal)
FROM employee

WHERE Dept=1024

GROUP BY Sex;

I UCLA —p.13/22

Simple Aggregates in ATLaS

SEQ. an aggregate that appends to each new tuple
a consecutive segquence number

The pbisTincT version of the same (duplicate tuples
are ignored)

To implement that, you must declare a MEMO table
to memorize old values

Then results could be returned:

* during computation: in the iNniTiaL and ITERATE
states: nonblocking and monotonic UDA

* all at the end in the TerminaTE State: blocking
(and frequently) nonmonotonic UDA

* Users can exercise high-level control over
computation.

UCLA —p.14/22

The Point and value of Minimum In a
seguence of pairs

AGGREGATE minpair(iPoint Int, iValue Int)
. (mPoint Int, mValue Int)
TABLE mvalue(value Int); TABLE mpoints(point Int);
INITIALIZE: {
INSERT INTO mvalue VALUES (iValue);
INSERT INTO mpoints VALUES(iPoint);
}
ITERATE: {
UPDATE mvalue SET value = iValue WHERE iValue < value;
DELETE FROM mpoints WHERE SQLCODE = 0;
INSERT INTO mpoints
SELECT iPoint FROM mvalue
WHERE iValue =mvalue.value;

;

TERMINATE: {
INSERT INTO RETURN

SELECT point, value FROM mpoints, mvalue; }

UCLA —p.15/22

SIS

AGGREGATE coalesce(from TIME, to TIME)

{

. (start TIME, end TIME)
TABLE state(cFrom TIME, cTo TIME);
INITIALIZE: { INSERT INTO state VALUES(from,to0) }
ITERATE :{
UPDATE state SET cTo =to
WHERE cTo >= from AND cTo < to;
INSERT INTORETURN
SELECT cFrom, cTo FROM state
WHERE cTo < from;
UPDATE state
SET cFrom =from, cTo =to
WHERE cTo < from; }
TERMINATE: { INSERT INTO RETURN
SELECT cFrom, cTo FROM state; }

Coalescing

UCLA —p.16/22

Computation of Transitive Closures

BLE dgraph(start Char(10), end Char(10)) SOURCE (‘mydDb’);

AGGREGATE reachable(Inode Char(10)) : Char(10)
{ INITIALIZE: ITERATE: {
INSERT INTO RETURN VALUES (Inode);
INSERT INTO RETURN
SELECT reachable(end) FROM dgraph
WHERE start=Inode;

}
}
SELECT reachable(dgraph.end) FROM dgraph
WHERE dgraph.start="000’;

. UCLA —p.17/22

Transitive Closures—Cont.

* reachable performs a top-down computation
(Prolog-like)

* we can also use a memo table to eliminate
duplicate results and Prolog’s infinite loops

* We can also express recursion using a bottom-up
computation implementing the differential fixpoint
algorithm

* In the next slide we show a nonrecursive way,
similar to that used by active database triggers.

. UCLA — p.18/22

Incremental Computation of
Transitive Closures

digraph G, a node Y is reachable from node X iff there is a
simple path from X to Y.

Say that T Is the transitive closure of G to which we now add a
new arc A — B.

Thenifforsome X andY, X - AcT-and B —Y € Ty, we
have four kinds of new simple paths trough A — B (an arc from
the start node to the end node of each path must then be added
to Tv):

1. A— B(Stepl:add A — BtoTy)

2. X - A— B (Step2:add X — Bto1r)

3. A—-B—-Y (Step3:add A — Y toTy)

4. X - A— B —Y (Step4: add X — Y to 1)

But say that we perform these additions serially, and Step 2
produces 7;/,. Then Steps 3 and 4 can be replaced by:

3.fX -BeT,and B—Y € T¢thenadd X — Y to T},

UCLA —p.19/22

Reachable Nodes Incrementally

AGGREGATE tclosur(A Char(10), B Char(10))
. (tcX Char(10), tcY Char(10))
{ TABLE tc(snode Char(10), enode: Char(10));
INITIALIZE: ITERATE: {
INSERT INTO tc VALUES(A,B);
INSERT INTO tc
SELECT tc.snode, B
FROM tc WHERE tc.enode=A;
INSERT INTO tc
SELECT tcl.snode, tc2.enode
FROM tc AS tcl, tc2
WHERE tcl.enode=tc2.snode;

}

TERMINATE: { INSERT INTO RETURN SELECT * FROM tc; }

}

The call is: SELECT tclosur(dgraph.start, dgraph.end)
. FROM dgraph, UCLA — p.20/22

The Power of Streams

~ » Relationally complete languages cannot express
transitive closures

* Recursion had to be added to SQL to express
these queries

* Here, we have expressed transitive closure in a
non-recursive ATLaS program

° Conclusion: a stream-oriented processing model
adds significant expressive power to SQL!

» ATLaS taps on this hidden source of power.

* We have In fact proven that ATLAS is Turing
Complete.

UCLA —p.21/22

Blocking and NonBlocking
Aggregates

Nonblocking aggregates are needed for streams

Every UDA with an empty TermMINATE clause Is
nonblocking—also monotonic

tclosr can be made nonblocking by moving the
RETURN 1O the Initialize/iterate states.

Memory is the second issue for stream-based
processing

Our program only uses one tuple. This is fine If
there Is no duplicate path (i.e., our graph is a tree)
or we do not mind duplicates. Otherwise, we need
to store previous pairs in a memo table and add a
NOT IN check to the code.

UCLA —p.22/22

	Outline
	Part I: The Problem
	DBMSs and Data Mining
	Data Mining in Object-Oriented DBMSs
	Replacing SQL with Better Languages for Mining Databases
	Part II: Introducing ATLaS
	A Brief History of ATLaS
	ATLaS Main Ideas
	De{f}ining Aggregates
	Example: De{f}ine Average
	OnLine Averages
	Calling UDAs
	Simple Aggregates in ATLaS
	The Point and value of Minimum in a sequence of pairs
	Coalescing
	Computation of Transitive Closures
	Transitive Closures---Cont.
	Incremental Computation of Transitive Closures
	Reachable Nodes Incrementally
	The Power of Streams
	Blocking and NonBlocking Aggregates

