
Extending SQL for Decision Support
Applications

Carlo Zaniolo*

*Course Notes for CS240B

UCLA – p.1/22



Outline

Part I The problem and the state of the art

Part II Introduction to ATLaS

Part III Decision support applications

Part IV The System and Performance

Part V Conclusions and future directions.

UCLA – p.2/22



Part I: The Problem

• Databases: where the data is (well most of it)

• But Database Management Systems (DBMSs) do not
support well data mining tasks

• Desiderata: Data Mining Query Languages that support
ad-hoc mining queries and general data mining

UCLA – p.3/22



DBMSs and Data Mining

• Many proposals, including:
• DMQL [Han, Fu, Wang, Koperski, Zaiane:

DMDW 1996]
• Mine operator [Meo, Psaila, Ceri: 1996]
• M-SQL [Imielinski, Virmani: 1999]

• Difficult technical challenges:
• No natural way to retrofit SQL with mining

operators—as opposed to ROLAP extensions
that naturally fit in the (super)group-by syntax

• Implementation and Performance issues
• Much diversity in mining tasks: Can one

solution fit all?

UCLA – p.4/22



Data Mining in Object-Oriented
DBMSs

• S. Sarawagi, S. Thomas,R. Agrawal: Integrating Association
Rule Mining with Relational Database Systems: Alternatives
and Implications,SIGMOD 1998

• The Question: forget nice SQL extensions, and ask if
experts can implement Apriori efficiently in an
Object-Relational System such as DB2. An the answer was:
• Not easily: UDFs are very difficult to write and debug
• Not as efficient as Cache Mining approaches

• Apriori established as the acid test for the extensibility of
DBMSs for data mining tasks.

• Next Question: is SQL the real cause of these problems and
should we instead use other languages for database centric
datamining?

UCLA – p.5/22



Replacing SQL with Better
Languages for Mining Databases

• The DATASIFT project uses the logical data
language LDL++ to address these problems
[Giannotti, Manco, et al. 1999, 2000]
• Both deductive and inductive reasoning needed

to support the data mining process
• LDL++ is Turing complete and supports User

Defined Aggregates (UDAs)
• Direct C++ implementation of UDAs to solve

performance problems
• New Datamining Algebras: The 3W Model

[Johnson, Lakshmanan, Ng: VLDB 2000]

UCLA – p.6/22



Part II: Introducing ATLaS

1. History and main ideas

2. Simple examples: average, minpoints, temporal
coalescing after projetion

3. Transitive closure computation

UCLA – p.7/22



A Brief History of ATLaS

1. SQL–AG: extending SQL3 proposal for
Aggregates to support ‘early returns’ [1999]

2. LDL++ 5.1: Logic Database Language Monotonic
Aggregates: used freely in recursive queries for
BoM and greedy algorithms [1999]

3. SADL: Simple Aggregate Definition Language
based on SQL. easy to use, but with limited
performance and power [2000]

4. AXL: Aggregate eXtension Language: Much more
powerful and efficient [2001]

5. ATLaS: table functions and in-memory tables with
references [2002]

6. ATLaS: table functions and support for the
definition and management of in-memory data
structures using SQL [2003]

UCLA – p.8/22



ATLaS Main Ideas

• Tables as the only data type
• SQL statements as the only statements
• Native Extensibility by letting users introduce new

Aggregates and Table functions by coding them in
SQL

UCLA – p.9/22



Defining Aggregates

Aggregates are functions that process a stream of
values, on the basis of whether the current item is

• The first value—INITIALIZE state,
• Every other successive value—ITERATE state,
• The EOF marker—TERMINATE state
• The calling query generates the streams—one for

each GROUP BY— and set the states

This way of defining UDAs is similar to that used by
Postgres, LDL++, SQL3, etc.

ATLaS aggregates take streams as input but also re-

turn streams as output (e.g., online aggregates)
UCLA – p.10/22



Example: Define Average

AGGREGATE myavg(Next Int) : Real
{ TABLE state(sum Int, cnt Int);

INITIALIZE : {
INSERT INTO state VALUES (Next, 1);

}
ITERATE : {

UPDATE state SET sum=sum+Next, cnt=cnt+1;
}
TERMINATE : {

INSERT INTO RETURN
SELECT sum/cnt FROM state;

}
}

UCLA – p.11/22



OnLine Averages

AGGREGATE online avg(Next Int) : Real
{ TABLE state(sum Int, cnt Int);

INITIALIZE : {
INSERT INTO state VALUES (Next, 1);

}
ITERATE : {

UPDATE state SET sum=sum+Next, cnt=cnt+1;
INSERT INTO RETURN

SELECT sum/cnt FROM state
WHERE cnt % 200 = 0;

}
TERMINATE : {
}

}

UCLA – p.12/22



Calling UDAs

SELECT Sex, online avg(Sal)
FROM employee
WHERE Dept=1024
GROUP BY Sex;

UCLA – p.13/22



Simple Aggregates in ATLaS

• SEQ: an aggregate that appends to each new tuple
a consecutive sequence number

• The DISTINCT version of the same (duplicate tuples
are ignored)

• To implement that, you must declare a MEMO table
to memorize old values

• Then results could be returned:
• during computation: in the INITIAL and ITERATE

states: nonblocking and monotonic UDA
• all at the end in the TERMINATE state: blocking

(and frequently) nonmonotonic UDA
• Users can exercise high-level control over

computation.
UCLA – p.14/22



The Point and value of Minimum in a
sequence of pairs

AGGREGATE minpair(iPoint Int, iValue Int)
: (mPoint Int, mValue Int)

{ TABLE mvalue(value Int); TABLE mpoints(point Int);
INITIALIZE: {

INSERT INTO mvalue VALUES (iValue);
INSERT INTO mpoints VALUES(iPoint);

}
ITERATE: {

UPDATE mvalue SET value = iValue WHERE iValue < value;
DELETE FROM mpoints WHERE SQLCODE = 0;
INSERT INTO mpoints

SELECT iPoint FROM mvalue
WHERE iValue =mvalue.value;

}
TERMINATE: {

INSERT INTO RETURN
SELECT point, value FROM mpoints, mvalue; }

} UCLA – p.15/22



Coalescing

AGGREGATE coalesce(from TIME, to TIME)

: (start TIME, end TIME)

{ TABLE state(cFrom TIME, cTo TIME);

INITIALIZE: { INSERT INTO state VALUES(from,to) }
ITERATE :{

UPDATE state SET cTo = to

WHERE cTo >= from AND cTo < to;

INSERT INTORETURN

SELECT cFrom, cTo FROM state

WHERE cTo < from;

UPDATE state

SET cFrom = from, cTo = to

WHERE cTo < from; }
TERMINATE: { INSERT INTO RETURN

SELECT cFrom, cTo FROM state; }
}

UCLA – p.16/22



Computation of Transitive Closures

TABLE dgraph(start Char(10), end Char(10)) SOURCE (‘mydb’);

AGGREGATE reachable(Inode Char(10)) : Char(10)
{ INITIALIZE: ITERATE: {

INSERT INTO RETURN VALUES (Inode);
INSERT INTO RETURN

SELECT reachable(end) FROM dgraph
WHERE start=Inode;

}
}

SELECT reachable(dgraph.end) FROM dgraph
WHERE dgraph.start=’000’;

UCLA – p.17/22



Transitive Closures—Cont.

• reachable performs a top-down computation
(Prolog-like)

• we can also use a memo table to eliminate
duplicate results and Prolog’s infinite loops

• We can also express recursion using a bottom-up
computation implementing the differential fixpoint
algorithm

• In the next slide we show a nonrecursive way,
similar to that used by active database triggers.

UCLA – p.18/22



Incremental Computation of
Transitive Closures

In digraph G, a node Y is reachable from node X iff there is a
simple path from X to Y .
Say that TC is the transitive closure of G to which we now add a
new arc A → B.
Then if for some X and Y , X → A ∈ TC and B → Y ∈ TC , we
have four kinds of new simple paths trough A → B (an arc from
the start node to the end node of each path must then be added
to TC):

1. A → B (Step 1: add A → B to TC)

2. X → A → B (Step 2: add X → B to TC)

3. A → B → Y (Step 3: add A → Y to TC)

4. X → A → B → Y (Step 4: add X → Y to TC)

But say that we perform these additions serially, and Step 2
produces T ′

C
. Then Steps 3 and 4 can be replaced by:

3’. If X → B ∈ T ′

C
and B → Y ∈ TC then add X → Y to T ′

C
UCLA – p.19/22



Reachable Nodes Incrementally

AGGREGATE tclosur(A Char(10), B Char(10))

: (tcX Char(10), tcY Char(10))

{ TABLE tc(snode Char(10), enode: Char(10));

INITIALIZE: ITERATE: {
INSERT INTO tc VALUES(A,B);

INSERT INTO tc

SELECT tc.snode, B

FROM tc WHERE tc.enode=A;

INSERT INTO tc

SELECT tc1.snode, tc2.enode

FROM tc AS tc1, tc2

WHERE tc1.enode=tc2.snode;

}
TERMINATE: { INSERT INTO RETURN SELECT * FROM tc; }

}
The call is: SELECT tclosur(dgraph.start, dgraph.end)

FROM dgraph; UCLA – p.20/22



The Power of Streams

• Relationally complete languages cannot express
transitive closures

• Recursion had to be added to SQL to express
these queries

• Here, we have expressed transitive closure in a
non-recursive ATLaS program

• Conclusion: a stream-oriented processing model
adds significant expressive power to SQL!

• ATLaS taps on this hidden source of power.
• We have in fact proven that ATLAS is Turing

Complete.

UCLA – p.21/22



Blocking and NonBlocking
Aggregates

• Nonblocking aggregates are needed for streams
• Every UDA with an empty TERMINATE clause is

nonblocking—also monotonic
• tclosr can be made nonblocking by moving the

RETURN to the initialize/iterate states.
• Memory is the second issue for stream-based

processing
• Our program only uses one tuple. This is fine if

there is no duplicate path (i.e., our graph is a tree)
or we do not mind duplicates. Otherwise, we need
to store previous pairs in a memo table and add a
NOT IN check to the code.

UCLA – p.22/22


	Outline
	Part I: The Problem
	DBMSs and Data Mining
	Data Mining in Object-Oriented DBMSs
	Replacing SQL with Better Languages for Mining Databases
	Part II: Introducing ATLaS
	A Brief History of ATLaS
	ATLaS Main Ideas
	De{f}ining Aggregates
	Example: De{f}ine Average
	OnLine Averages
	Calling UDAs
	Simple Aggregates in ATLaS
	The Point and value of Minimum in a sequence of pairs
	Coalescing
	Computation of Transitive Closures
	Transitive Closures---Cont.
	Incremental Computation of Transitive Closures
	Reachable Nodes Incrementally 
	The Power of Streams
	Blocking and NonBlocking Aggregates

