
Data Mining Applications in ATLAS
Carlo Zaniolo*

*Course Notes for CS240B

UCLA – p.1/22

Classifiers

The play tennis example, and its vertical version.

RID Outlook Temp Humidity Wind Play
1 Sunny Hot High Weak No
2 Rain Mild High Weak Yes
3 Overcast Hot High Weak Yes
4 Sunny Hot High Strong No
5 Rain Cool Normal Weak Yes
6 Rain Cool Normal Strong Yes
7 Overcast Cool Normal Strong No
8 Sunny Mild High Weak No
9 Sunny Cool Normal Weak Yes

10 Rain Mild Normal Weak Yes
11 Sunny Mild Normal Strong Yes
12 Overcast Mild High Strong Yes
13 Overcast Hot Normal Weak Yes
14 Rain Mild High Strong No

RID col val YorN
1 1 Rain No
1 2 Mild No
1 3 High No
1 4 Strong No
2 1 Rain Yes
2 2 Mild Yes
2 3 High Yes
2 4 Weak Yes
3 1 . . .

.

UCLA – p.2/22

Table Functions

Dissemble a relation into column/value pairs:

FUNCTION dissemble (v1 Int, v2 Int, v3 Int, v4 Int, YorN Int)
: (col Int, val Int, YorN Int);

{ INSERT INTO RETURN
VALUES (1, v1, YorN), (2, v2, YorN),

(3, v3, YorN), (4, v4, YorN);
}

Then you write the classifier and call it as follows:

SELECT classify(0, p.RID, d.Col, d.Val, d.YorN)
FROM PlayTennis AS p,
TABLE(dissemble(Outlook,Temp, Humidity, Wind, Play)) AS d;

UCLA – p.3/22

Naive Bayesian Classifiers

• For each pair (column, value) count the positives and

negatives and store them in a summary table:

col val Yc Nc

1 Rain 14 11

1 Sunny 21 13

1 Overcast 23 17

2 Hot 14 28

2

• Also tally up the positives and negatives
• These operations are done in one pass
• The resulting table is all is needed to classify a new tuple.

Example: (Sunny, Hot, . . .).
UCLA – p.4/22

Decision Tree Classifiers

We start by computing the SUMMARY table
Then select a column for splitting using the gini index:

• We start by computing the SUMMARY table.
• Compute the Gini index g for each column.

1. Gini for each value in the column:
fp = p/(p + n), fn = n/(p + n), g = 1 − f2

p
− f2

n

2. Gini for the column: Gini = f1 × g1 + f2 × g2 + . . .

col val Yc Nc

1 Rain 14 11
1 Sunny 21 13
1 Overcast 23 17
2 Hot 14 28
2

For instance for column 1 we have three values: rain, sunny,
overcast (in the implementation these values are coded as
integers).

UCLA – p.5/22

Decision Tree Classifiers–cont.
• Find the column with the least Gini (using minpair) and

store it in mincol.
• Reclassify the tuples by splitting each class according to

their values in column c. An unique id must be generated for

the new class.
• Recursive invocation (but homogenous classes and

columns with only one value are not split)

UCLA – p.6/22

A Scalable Decision Tree Classifier

AGGREGATE classify(iNode Int, RecId Int, iCol Int,
iValue Int, iYorN Int)

{ TABLE treenodes(RecId Int, Node Int, Col Int,
Value Int, YorN Int);

TABLE mincol(Col Int);
TABLE summary(Col Int, Value Int, Yc Int, Nc Int,

INDEX {Col,Value});
TABLE ginitable(Col Int, Gini Int);
INITIALIZE : ITERATE : {

INSERT INTO treenodes
VALUES(RecId, iNode, iCol, iValue, iYorN);

UPDATE summary
SET Yc=Yc+iYorN, Nc=Nc+1-iYorN
WHERE Col = iCol AND Value = iValue;

INSERT INTO summary
SELECT iCol, iValue, iYorN, 1-iYorN
WHERE SQLCODE¡¿0;

}
UCLA – p.7/22

A Scalable Decision Tree
Classifier—Cont

TERMINATE : {
INSERT INTO ginitable

SELECT Col, sum((Yc*Nc)/(Yc+Nc))/sum(Yc+Nc)
FROM summary
GROUP BY Col;
HAVING count(Value)>1

AND sum(Yc)>0 AND sum(Nc)>0;
INSERT INTO mincol

SELECT minpair(Col, Gini) FROM ginitable;
INSERT INTO result

SELECT iNode, Col FROM mincol;
/* Call classify() recusively to partition each of its subnodes unless it is pure.*/

SELECT classify(t.Node*MAXVALUE+m.Value+1,
t.RecId, t.Col, t.Value, t.YorN)

FROM treenodes AS t,
(SELECT tt.RecId, tt.Value

FROM treenodes AS tt, mincol AS m
WHERE tt.Col=m.Col

) AS m
WHERE t.RecId = m.RecId
GROUP BY m.Value; }

} UCLA – p.8/22

Association Rules: Apriori

• Many attempts to implement frequent-item-set
computations in SQL DBMS and O-R DBs have
failed to produce good performance

• In-depth investigation by Sarawagi, Thomas, and
Agrawal [ACM/SIGMOD 98] established this as the
acid test for any SQL extension claiming to do
support data mining

• Our previous system, AXL, had also failed
because of poor performance

• ATLaS solved the problem via (i) table functions,
(ii) in-memory tables, and (iii) better optimization
techniques.

UCLA – p.9/22

Example: Apriori
Algorithm—minimun support = 2

D :

TID Items

1000 1, 3, 4
200 2, 3, 5
300 1, 2, 3, 5
400 2, 5

Scan D

Itemset Support

{1} 2
{2} 3
{3} 3
{4} 1
{5} 3

Filter

Itemset Support

{1} 2
{2} 3
{3} 3
{5} 3

Build
Larger
Sets

→

Itemset

{1,2 }
{1,3 }
{1, 5 }
{2,3 }
{2,5}
{3, 5 }

Scan D

Itemset Support

{1,2 } 1
{1,3 } 2
{1, 5 } 1
{2,3 } 2
{2,5 } 3
{3, 5 } 2

Filter

Itemset Support

{1,3 } 2
{2,3 } 2
{2,5 } 3
{3, 5 } 2

Build
Larger
Sets

→
Itemset

{2,3, 5 }
Scan D

Itemset Support

{2,3, 5 } 2
Filter:

Itemset Support

{2,3, 5 } 2

UCLA – p.10/22

Main Operations

• Scanning the database and counting occurrences
• Pruning the itemsets below the minimum support

level:
• Combining frequent sets of size n into candidate

larger sets of size n + 1 [or even larger].
Monotonicity Condition: The support level of a set
is always ≤ than that of every subset

• Checking the presence of large-cardinality item
sets is expensive. A prefix tree is used to solve this
problem.

• In memory tables with references were used here.

UCLA – p.11/22

A Priori in ATLaS

• baskets(item INT): A stream of transactions from the
DB table

0, 2, 3, 4,0, 1, 2, 3, 4,0, 3, 4, 5,0, 1, 2, 5,0, 2, 4, 5

• The frequent itemsets in the prefix tree: trie

• The tuples in cands hold an item, cit, a reference,
trieref, to a leaf node of the trie, and a the count
freqcount, for the set.

UCLA – p.12/22

The Prefix Tree

1 2 3 4 5

null

2 3 4 5 3 4 5 4 5 5

1st Level

cands

1 2 3 4 5

null

2 3 5

1st Level

44 5

4

2nd Level

3rd Level

UCLA – p.13/22

Main ATLaS Program for Apriori

1: TABLE baskets(item Int);
2: TABLE trie(item Int, father REF(trie), INDEX(father)) MEMORY;
3: TABLE cands(item Int, trieref REF(trie), freqcount Int,

INDEX(cit,trieref)) MEMORY;
4: TABLE fitems(item Int, INDEX(item));

/*generate frequent singleton sets*/
5: INSERT INTO fitems

SELECT item FROM baskets WHERE item > 0
GROUP BY item HAVING count(*) ≥ MinSup;

/* intialize the trie to contain frequent singletons*/
6: INSERT INTO trie SELECT item, null FROM fitems;

/*self-join frequent 1-itemsets to get candidate 2-item sets*/
7: INSERT INTO cands

SELECT t1.itno, t2.OID, 0 FROM trie AS t1, trie AS t2
WHERE t1.itno > t2.itno;

/*Generate (k+1)-itemsets from k-itemsets. Start with k=2*/
8: SELECT countset(item, 2, MinSup, cands) FROM baskets;

UCLA – p.14/22

Managing the Prefix Tree

• A perfect candidate for an TRIE ADT coded in C++
• But we did it in ATLaS SQL
• Using an in-memory table using SQL3 reference

type to organize the TRIE data structure
• How are reference types on in-memory tables

implemented in ATLaS ...?

UCLA – p.15/22

Performance

Name T I D size of dataset

T5.I2.D100K 5 2 100K 2.8M text stream

T10.I2.D100K 10 2 100K 5.2M text stream

T10.I4.D100K 10 4 100K 5.2M text stream

T20.I2.D100K 20 2 100K 10.1M text stream

Table 1: Benchmark Data Sets

UCLA – p.16/22

Performance Curves

2 1.5 1 .75 .5 .25
0

5

10

15

20

25

30

35

40

Min Support

Ti
m

e
(s

ec
)

T5.I2.D100K

ATLaS
C

2 1.5 1 .75 .5 .25
0

20

40

60

80

100

Min Support

Ti
m

e
(s

ec
)

T10.I2.D100K

ATLaS
C

2 1.5 1 .75 .5 .25
0

20

40

60

80

100

Min Support

Ti
m

e
(s

ec
)

T10.I4.D100K

ATLaS
C

2 1.5 1 .75 .5 .25
0

100

200

300

400

500

Min Support

Ti
m

e
(s

ec
)

T20.I2.D100K

ATLaS
C

Figure 1: ATLaS vs. C implementation of Apriori

UCLA – p.17/22

Programming in ATLaS

• Table-based programming is powerful and natural
for data intensive applications

• SQL can be awkward and many extensions are
possible

• But even SQL AS IS is adequate even for complex
datamining queries and algorithms.

UCLA – p.18/22

The ATLaS System

• ATLaS programs into C programs are compiled
into C programs that Execute on the Berkeley DB
record manager

• The 100 Apriori program compiles into 2,800 lines
of C The system

• Other data structures (R-trees, in-memory tables)
have been added using the same API.

• The system is now 54,000 lines of C++ code.

UCLA – p.19/22

ATLaS: Conclusions

• A simple native extensibility mechanism for SQL
• More efficient than Java or PL/SQL. Effective with

Data Mining Applications
• Also OLAP applications, and recursive queries,

and temporal database applications
• Complements current extensibility mechanisms

based on UDFs and Data Blades
• Supports and favors streaming aggregates (in

SQL the default is blocking)
• Good basis for determining program properties:

e.g. (non)monotonic and blocking behavior
• These are lessons that future query languages

cannot easily ignore. UCLA – p.20/22

References
1. J. Han, Y. Fu, W. Wang, K. Koperski, and O. R. Zaiane. DMQL: A Data Mining

Query Language for Relational Databases. In Proc. 1996 SIGMOD’96 Workshop
on Research Issues on Data Mining and Knowledge Discovery (DMKD’96), pp.
27-33, Montreal, Canada, June 1996.

2. R. Meo, G. Psaila, S. Ceri. A New SQL-like Operator for Mining Association Rules.
In Proc. VLDB96, 1996 Int. Conf. Very Large Data Bases, Bombay, India, pp.
122-133.

3. T. Imielinski and A. Virmani. MSQL: a query language for database mining. Data
Mining and Knowledge Discovery, 3:373-408, 1999. S.

4. S. Tsur, J. Ulman, S. Abiteboul, C. Clifton, R. Motwani, S. Nestorov. Query flocks:
a generalization of association rule mining. In Proc. 1998 ACM-SIGMOD, p. 1-12,
1998.

5. F. Bonchi , F. Giannotti, G. Mainetto, D. Pedreschi. A Classification-based
Methodology for Planning Audit Strategies in Fraud Detection. In Proc. KDD-99,
ACM-SIGKDD Int. Conf. on Knowledge Discovery & Data Mining, San Diego (CA),
August 1999.

6. F. Giannotti, G. Manco, D. Pedreschi and F. Turini. Experiences with a logic-based
knowledge discovery support environment. In Proc. 1999 ACM SIGMOD
Workshop on Research Issues in Data Mining and Knowledge Discovery (DMKD
1999).

7. T. Johnson, Laks V. S. Lakshmanan, Raymond T. Ng: The 3W Model and Algebra
for Unified Data Mining. VLDB 2000: 21-32.

UCLA – p.21/22

References–Cont.

8 Haixun Wang, Carlo Zaniolo. Using SQL to Build New Aggregates and Extenders
for Object-Relational Systems. VLDB 2000.

9 Haixun Wang, Carlo Zaniolo. ATLaS: a Native Extension of SQL for Data Mining.
2003 SIAM International Conference on Data Mining (SDM03), May 1–3, San
Francisco, CA.

UCLA – p.22/22

	Classifiers
	Table Functions
	Naive Bayesian Classif{i}ers
	Decision Tree Classif{i}ers
	Decision Tree Classif{i}ers--cont.
	A Scalable Decision Tree Classi{f}ier
	A Scalable Decision Tree Classi{f}ier---Cont
	Association Rules: Apriori
	Example: Apriori Algorithm---minimun support $= 2$
	 Main Operations
	 A Priori in ATLaS
	The Pref{i}x Tree
	Main ATLaS Program for Apriori
	Managing the Pref{i}x Tree
	Performance
	Performance Curves
	Programming in ATLaS
	The ATLaS System
	ATLaS: Conclusions
	References
	References--Cont.

