Posets, Lattices, and Fixpoints CS240B Notes

Carlo Zaniolo, March 2002

Partial Orders

Let *S* be a set. A *relation R* on *S* is a subset of $S \times S$. We denote the fact that $(x, y) \in R$ by xRy. Let \leq be a relation on a set *S*. Then \leq is a *partial order* if the following conditions are satisfied: (a) $x \leq x$,

(b) $x \leq y$ and $y \leq x$ imply x = y and (c) $x \leq y$ and $y \leq z$ imply $x \leq z$, for all $x, y, z \in S$.

We also use the notation (S, \preceq) to denote the partial order \preceq on S. S is often called a poset. Example: Let S be a set and 2^S be the set of all subsets of S. Then $(2^S, \subseteq)$, with \subseteq denoting set inclusion, is a partial order.

LUBs and GLBs for a partial order (S, \preceq)

- $a \in S$ is an *upper bound* of a subset X of S if $x \leq a$, for all $x \in X$. Similarly, $b \in S$ is a *lower bound* of X if $b \leq x$, for all $x \in X$.
- a ∈ S is the *least upper bound* of a subset X of S if a is an upper bound of X and, for all upper bounds a' of X, we have a ≤ a'. Similarly, b ∈ S is the greatest lower bound of a subset X of S if b is a lower bound of X and, for all lower bounds b' of X, we have b' ≤ b.
- The least upper bound of X is denoted by *lub*(X); the greatest lower bound of X is denoted by *glb*(X).
 lub(X), when it exists, is unique—same for *glb*(X).
- The glb or lub may not exist for every subset of a partially ordered L.

Lattices

- A partially ordered set *L* is called a *lattice* when *lub*({*a*, *b*}) and *glb*({*a*, *b*}) exist for every two elements, *a*, *b* ∈ *L*.
- If *L* is a lattice, then glb(X) and lub(X) exist for every *finite* subset $X \subseteq L$. However this conclusion does not hold when *X* is infinite.
- A lattice L, is a complete lattice, when it contains the lub(X) and glb(X) for every X ⊆ L. (Finite lattices are always complete—infinite lattices might not be complete.)
- T denotes the *top element*, lub(L), and \perp denotes the *bottom element*, glb(L), of the complete lattice L.

Lattices-cont

- In the previous example, (2^S, ⊆) is a complete lattice. The top element is S and the bottom element is Ø.
- Let (L, \preceq) be a lattice and $X \subseteq L$. We say X is a total order when for every pair $x, y \in L$ either $x \preceq y$ or $y \preceq x$
- Let (L, \preceq) be a lattice. Every (N, \preceq) , such that $N \subseteq L$ is called a *sublattice* of (L, \preceq) .
- Let L be a lattice, and N be a totally ordered sublattice of L. If N contains its bottom, then it is called a *chain*. A chain of L is a totally ordered sublattice closed at the bottom.

Mappings

Let (L, \preceq) be a complete lattice and $T : L \rightarrow L$ be a mapping.

- We say *T* is *monotonic* if $T(x) \leq T(y)$, whenever $x \leq y$.
- A mapping is called *continuous* if preserves lubs on chains: *T* is *continuous* if *T(lub(X)) = lub(T(X))* for every chain *X* of *L*.
 By taking *X = {x, y}*, we see that every continuous mapping is monotonic. However, the con-
- verse is not true.

Fixpoints

- x = T(x) is called a *fixpoint equation*. The solutions of these equations are called fixpoints of T.
- Let (L, \preceq) be a complete lattice and $T : L \rightarrow L$ be a mapping: $y \in L$ is the *least fixpoint* of Tif y is a fixpoint (that is, T(y) = y), and for all fixpoints z of T, we have $y \preceq z$. Similarly, we define the greatest fixpoint.
- Theorem (Knaster/Tarski): Let (L, \preceq) be a complete lattice and $T: L \rightarrow L$ be monotonic. Then T has a least fixpoint, lfp(T), and a greatest fixpoint, gfp(T).

Fixpoints by Powers of T

A simple constructive characterization of least fixpoints exists for for mappings that are continuous:

The *n*-th power, of $T: L \rightarrow L$, denoted $T \uparrow n$ is defined as follows:

 $T \uparrow 0 (x) = x$ $T \uparrow (n+1) (x) = T(T \uparrow n (x))$...

 $T \uparrow \omega(x) = \mathbf{lub}(\{T \uparrow n(x) \mid n \ge 0\})$

Fixpoints by Powers of T-cont

Theorem: Let *L* be a complete lattice and $T: L \rightarrow L$ be continuous. Then, $lfp(T) = T \uparrow \omega (\bot)$.

Thus, for continuous functions, the least fixpoint can be computed by starting from the bottom and iterating the application of T ad infinitum—or until the n + 1 power is identical to n-th one.