Posets, Lattices, and Fixpoints
 CS240B Notes

Carlo Zaniolo, March 2002

Partial Orders

Let S be a set. A relation R on S is a subset of $S \times S$. We denote the fact that $(x, y) \in R$ by $x R y$. Let \preceq be a relation on a set S. Then \preceq is a partial order if the following conditions are satisfied:
(a) $x \preceq x$,
(b) $x \preceq y$ and $y \preceq x$ imply $x=y$ and (c) $x \preceq y$ and $y \preceq z$ imply $x \preceq z$, for all $x, y, z \in S$.
We also use the notation (S, \preceq) to denote the partial order \preceq on S. S is often called a poset. Example: Let S be a set and 2^{S} be the set of all subsets of S. Then $\left(2^{S}, \subseteq\right)$, with \subseteq denoting set inclusion, is a partial order.

LUBs and GLBs for a partial order (S, \preceq)

- $a \in S$ is an upper bound of a subset X of S if $x \preceq a$, for all $x \in X$. Similarly, $b \in S$ is a lower bound of X if $b \preceq x$, for all $x \in X$.
- $a \in S$ is the least upper bound of a subset X of S if a is an upper bound of X and, for all upper bounds a^{\prime} of X, we have $a \preceq a^{\prime}$. Similarly, $b \in S$ is the greatest lower bound of a subset X of S if b is a lower bound of X and, for all lower bounds b^{\prime} of X, we have $b^{\prime} \preceq b$.
- The least upper bound of X is denoted by $\operatorname{lub}(X)$; the greatest lower bound of X is denoted by $g l b(X)$. $\operatorname{lub}(X)$, when it exists, is unique-same for $\operatorname{glb}(X)$.
- The glb or lub may not exist for every subset of a partially ordered L.

Lattices

- A partially ordered set L is called a lattice when $\operatorname{lub}(\{a, b\})$ and $g l b(\{a, b\})$ exist for every two elements, $a, b \in L$.
- If L is a lattice, then $g l b(X)$ and $\operatorname{lub}(X)$ exist for every finite subset $X \subseteq L$. However this conclusion does not hold when X is infinite.
- A lattice L, is a complete lattice, when it contains the $\operatorname{lub}(X)$ and $g l b(X)$ for every $X \subseteq L$. (Finite lattices are always complete-infinite lattices might not be complete.)
- T denotes the top element, $\operatorname{lub}(L)$, and \perp denotes the bottom element, $g l b(L)$, of the complete lattice L.

Lattices-cont

- In the previous example, $\left(2^{S}, \subseteq\right)$ is a complete lattice. The top element is S and the bottom element is \emptyset.
- Let (L, \preceq) be a lattice and $X \subseteq L$. We say X is a total order when for every pair $x, y \in L$ either $x \preceq y$ or $y \preceq x$
- Let (L, \preceq) be a lattice. Every (N, \preceq), such that $N \subseteq L$ is called a sublattice of (L, \preceq).
- Let L be a lattice, and N be a totally ordered sublattice of L. If N contains its bottom, then it is called a chain. A chain of L is a totally ordered sublattice closed at the bottom.

Mappings

Let (L, \preceq) be a complete lattice and $T: L \rightarrow L$ be a mapping.

- We say T is monotonic if $T(x) \preceq T(y)$, whenever $x \preceq y$.
- A mapping is called continuous if preserves lubs on chains: T is continuous if
$T(l u b(X))=l u b(T(X))$ for every chain X of L.

By taking $X=\{x, y\}$, we see that every continuous mapping is monotonic. However, the converse is not true.

Fixpoints

- $x=T(x)$ is called a fixpoint equation. The solutions of these equations are called fixpoints of T.
- Let (L, \preceq) be a complete lattice and $T: L \rightarrow L$ be a mapping: $y \in L$ is the least fixpoint of T if y is a fixpoint (that is, $T(y)=y$), and for all fixpoints z of T, we have $y \preceq z$. Similarly, we define the greatest fixpoint.
- Theorem (Knaster/Tarski): Let (L, \preceq) be a complete lattice and $T: L \rightarrow L$ be monotonic. Then T has a least fixpoint, $l f p(T)$, and a greatest fixpoint, $g f p(T)$.

Fixpoints by Powers of T

A simple constructive characterization of least fixpoints exists for for mappings that are continuous:
The n-th power, of $T: L \rightarrow L$, denoted $T \uparrow n$ is defined as follows:

$$
\begin{gathered}
T \uparrow 0(x)=x \\
T \uparrow(n+1)(x)=T(T \uparrow n(x)) \\
\ldots \\
T \uparrow \omega(x)=\operatorname{lub}(\{T \uparrow n(x) \mid n \geq 0\})
\end{gathered}
$$

Fixpoints by Powers of T-cont

Theorem: Let L be a complete lattice and $T: L \rightarrow L$ be continuous. Then, $l f p(T)=T \uparrow \omega(\perp)$.
Thus, for continuous functions, the least fixpoint can be computed by starting from the bottom and iterating the application of T ad infinitum—or until the $n+1$ power is identical to n-th one.

