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Partial Orders
Let S be a set. A relation R on S is a subset of
S ×S. We denote the fact that (x, y) ∈ R by xRy.
Let ¹ be a relation on a set S. Then ¹ is a partial
order if the following conditions are satisfied:
(a) x ¹ x,
(b) x ¹ y and y ¹ x imply x = y and
(c) x ¹ y and y ¹ z imply x ¹ z, for all
x, y, z ∈ S.
We also use the notation (S,¹) to denote the
partial order ¹ on S. S is often called a poset.
Example: Let S be a set and 2S be the set of all
subsets of S. Then (2S,⊆), with ⊆ denoting set
inclusion, is a partial order.
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LUBs and GLBs for a partial order (S,¹)

a ∈ S is an upper bound of a subset X of S if x ¹ a,
for all x ∈ X. Similarly, b ∈ S is a lower bound of X if
b ¹ x, for all x ∈ X.
a ∈ S is the least upper bound of a subset X of S if a is
an upper bound of X and, for all upper bounds a′ of X,
we have a ¹ a′. Similarly, b ∈ S is the greatest lower
bound of a subset X of S if b is a lower bound of X

and, for all lower bounds b′ of X, we have b′ ¹ b.
The least upper bound of X is denoted by lub(X); the
greatest lower bound of X is denoted by glb(X).
lub(X), when it exists, is unique—same for glb(X).
The glb or lub may not exist for every subset of a
partially ordered L.
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Lattices
A partially ordered set L is called a lattice when
lub({a, b}) and glb({a, b}) exist for every two elements,
a, b ∈ L.
If L is a lattice, then glb(X) and lub(X) exist for every
finite subset X ⊆ L. However this conclusion does not
hold when X is infinite.
A lattice L, is a complete lattice, when it contains the
lub(X) and glb(X) for every X ⊆ L. (Finite lattices are
always complete—infinite lattices might not be
complete.)
> denotes the top element, lub(L), and ⊥ denotes the
bottom element, glb(L), of the complete lattice L.
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Lattices–cont

In the previous example, (2S,⊆) is a complete
lattice. The top element is S and the bottom
element is ∅.
Let (L,¹) be a lattice and X ⊆ L. We say X

is a total order when for every pair x, y ∈ L
either x ¹ y or y ¹ x

Let (L,¹) be a lattice. Every (N,¹), such that
N ⊆ L is called a sublattice of (L,¹).
Let L be a lattice, and N be a totally ordered
sublattice of L. If N contains its bottom, then
it is called a chain. A chain of L is a totally
ordered sublattice closed at the bottom.
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Mappings

Let (L,¹) be a complete lattice and T : L → L be
a mapping.

We say T is monotonic if T (x) ¹ T (y),
whenever x ¹ y.

A mapping is called continuous if preserves
lubs on chains: T is continuous if
T (lub(X)) = lub(T (X)) for every chain X of
L.

By taking X = {x, y}, we see that every con-

tinuous mapping is monotonic. However, the con-

verse is not true.
– p.6



Fixpoints
x = T (x) is called a fixpoint equation. The
solutions of these equations are called
fixpoints of T .
Let (L,¹) be a complete lattice and T : L → L

be a mapping: y ∈ L is the least fixpoint of T
if y is a fixpoint (that is, T (y) = y), and for all
fixpoints z of T , we have y ¹ z. Similarly, we
define the greatest fixpoint.
Theorem (Knaster/Tarski): Let (L,¹) be a
complete lattice and T : L → L be monotonic.
Then T has a least fixpoint, lfp(T ), and a
greatest fixpoint, gfp(T ).
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Fixpoints by Powers of T

A simple constructive characterization of least
fixpoints exists for for mappings that are
continuous:
The n-th power, of T : L → L, denoted T ↑ n is
defined as follows:

T ↑ 0 (x) = x

T ↑ (n + 1) (x) = T (T ↑ n (x))

. . .

T ↑ ω (x) = lub({T ↑ n (x) | n ≥ 0})
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Fixpoints by Powers of T–cont

Theorem: Let L be a complete lattice and
T : L → L be continuous. Then,
lfp(T ) = T ↑ ω (⊥).

Thus, for continuous functions, the least fixpoint

can be computed by starting from the bottom and

iterating the application of T ad infinitum—or until

the n + 1 power is identical to n-th one.
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