Fixpoint Semantics for Logic Programs

CS240B Notes

Notes based on Section 8.10 of Advanced Database Systems—Morgan Kaufmann, 1997

C. Zaniolo, March 2002

Immediate Consequence Operator

Rules can be viewed as mappings. Recursive rules define a *Fixpoint Equation* For positive programs, the *Immediate Consequence Operator* T_P is defined as follows:

 $T_P(I) = \{A \in B_P \mid \exists r : A \leftarrow A_1, ..., A_n \in ground(P), \{A_1, ..., A_n\} \subseteq$

Thus T_P is a mapping from Herbrand interpretations of Pto Herbrand interpretations of P. For the ancestor program: $I = \{anc(anne, marc), parent(marc, silvia)\}, and$ $T_P(I) = \{anc(marc, silvia), anc(anne, silvia), mother(anne, silvia), mother(anne, marc)\}$

Least Fixpoint of T_P

We can view a program *P* as defining the following *fixpoint equation* over Herbrand interpretations:

 $I = T_P(I)$

In general, a fixpoint equation might have no solution, one solution or several solutions. Interpretations are subsets of B_P —i.e., elements of the power set $2^{|B_P|}$. Now, $(2^{|B_P|})$, \subseteq) is a complete lattice and T_P is monotonic.

Two Important Theorems

From the Knaster/Tarski's fixpoint theorem:

• Theorem: Let P be a definite clause program. There always exist a least fixpoint for T_P , denoted $lfp(T_P)$.

It is also easy to prove that:

• Theorem: Let P be a definite clause program. Then, $M_P = lfp(T_P)$.

Thus, given a positive program P, $M_P = lfp(T_P)$ defines its meaning.

Operational Semantics: Powers of T_P $T_P^{\uparrow 0}(I) = I$ \dots $T_P^{\uparrow n+1}(I) = T_P(T_P^{\uparrow n}(I))$ Moreover, with ω denoting the first limit ordinal, we define:

 $T_P^{\uparrow\omega}(I) = \bigcup_{n\geq 0} \{T^{\uparrow n}(I) \mid n \geq 0\}$

Of particular interest are the powers of T_P starting from the empty set, i.e., for $I = \emptyset$ Theorem: If *P* is a positive program, $lfp(T_P) = T_P^{\uparrow \omega}(\emptyset)$.

Computation of $lfp(T_P) = T_P^{\uparrow \omega}(\emptyset)$

- The successive powers of T_P, form an ascending chain, since
 - $T_P^{\uparrow 0}(\emptyset) \subseteq T_P^{\uparrow 1}(\emptyset)$ (base), and
 - $T_P^{\uparrow n}(\emptyset) \subseteq T_P^{\uparrow n+1}(\emptyset)$ (induction)
- Moreover: $T_P^{\uparrow k+1}(\emptyset) = \bigcup_{n \le k} T_P^{\uparrow n}(\emptyset)$, and if $T_P^{\uparrow n+1}(\emptyset) = T_P^{\uparrow n}(\emptyset)$, then $T_P^{\uparrow n}(\emptyset) = T_P^{\uparrow \omega}(\emptyset)$.
- Thus, the least fixpoint can be computed by starting from the bottom and iterating the application of *T* until no new atoms are obtained and the (n + 1)th power is identical to the nth one—if such a condition never occurs then we have an infinite computation.