## Semantics of Datalog Languages CS240B Spring 2002 Notes



From Section 8.8 of Advanced Database Systems-Morgan Kaufmann, 1997

## Syntax of FOL-the alphabet

1. Constants.
2. Variables. In addition identifiers beginning with upper case, $x, y$ and $z$ also represent variables in this section.
3. Functions. Such as $f\left(t_{1}, \ldots, t_{n}\right)$ where $f$ is an $n$-ary functor and $t_{1}, \ldots, t_{n}$ are the arguments.
4. Predicates.
5. . The basic: $\vee, \wedge$, $\neg$ and the derived implication symbol $\leftarrow, \rightarrow$, and $\leftrightarrow$.
6. Quantifiers. The existential quantifier $\exists$ and the universal quantifier $\forall$.
7. Parentheses and punctuation symbols, used liberally as needed to avoid ambiguities.

## Syntax of First Order Logic-cont.

A Term is defined inductively as follows:

- A variable is a term


## Syntax of First Order Logic-cont.

A Term is defined inductively as follows:

- A variable is a term
- A constant is a term


## Syntax of First Order Logic-cont.

A Term is defined inductively as follows:

- A variable is a term
- A constant is a term
- If $f$ is an $n$-ary functor and $t_{1}, \ldots, t_{n}$ are terms, then $f\left(t_{1}, \ldots, t_{n}\right)$ is a term.


## Well-Formed Formulas (WFFs)

1. If $p$ is an $n$-ary predicate and $t_{1}, \ldots, t_{n}$ are terms, then $p\left(t_{1}, \ldots, t_{n}\right)$ is a formula (called an atomic formula or, more simply, an atom).
2. If $F$ and $G$ are formulas, then so are $\neg F$, $F \vee G, F \wedge G, F \leftarrow G F \rightarrow G$ and $F \leftrightarrow G$.
3. If $F$ is a formula and $x$ is a variable, then $\forall x(F)$ and $\exists x(F)$ are formulas. When so, $x$ is said to be quantified in $F$.
```
\existsG
\existsM(student(N, M, junior))
```


## Closed Formulas and Clauses

A WFF $F$ is said to a closed formula if every variable occurrence in $F$ is quantified. The formula in the previous example is not closed. But the following one is.

$$
\forall x \forall y \forall z(p(x, z) \vee \neg q(x, y) \vee \neg r(y, z))
$$

## Definite Clauses

A Definite Clause is a WFF which:

- is closed,
- all its variables are universally quantified, and
- is a disjunction of one positive atom and zero or more negated atoms.
A definite clause is representable with the rule notation:

$$
\forall x \forall y \forall z p(x, z) \leftarrow q(x, y), r(y, z) .
$$

## Positive Programs

- A definite clause with an empty body is called a unit clause.
- The notation used for unit clauses is " $A$." instead of the more precise notation " $A \leftarrow$."
- A fact is a unit clause without variables.

A unit clause (everybody loves himself) and three facts:

$$
\begin{aligned}
& \text { loves(X, X). } \\
& \text { loves(marc, mary). } \\
& \text { loves(mary, tom). } \\
& \text { hates(marc, tom). }
\end{aligned}
$$

A positive logic program is a set of definite clauses.

## Herbrand Interpretations for program $P$

- The Herbrand Universe for $P$, denoted $U_{P}$, is the set of all terms that can be recursively constructed by letting the arguments of the functions be constants in $P$ or elements in $U_{P}$
- The Herbrand Base of $P$ is defined as the set of atoms that can be built from the predicates by replacing their arguments with elements from $U_{P}$
- An Herbrand Interpretation is defined by assigning to each $n$-ary predicate $q$ an $n$-relation $Q$, where $q\left(a_{1}, \ldots, a_{n}\right)$ is true iff $\left(a_{1}, \ldots, a_{n}\right) \in Q$.
- Also, every subset of the Herbrand Base of $P$ defines an Herbrand interpretation of $P$


## Example

$$
\begin{array}{ll}
\operatorname{anc}(\mathrm{X}, \mathrm{Y}) \leftarrow & \operatorname{parent}(\mathrm{X}, \mathrm{Y}) . \\
\operatorname{anc}(\mathrm{X}, \mathrm{Z}) \leftarrow & \operatorname{anc}(\mathrm{X}, \mathrm{Y}), \operatorname{parent}(\mathrm{Y}, \mathrm{Z}) \\
\operatorname{parent}(\mathrm{X}, \mathrm{Y}) \leftarrow & \text { father }(\mathrm{X}, \mathrm{Y}) . \\
\operatorname{parent}(\mathrm{X}, \mathrm{Y}) \leftarrow & \text { mother }(\mathrm{X}, \mathrm{Y}) . \\
\text { mother }(\text { anne, silvia }) . & \text { mother (anne, marc). }
\end{array}
$$

Here: $U_{P}=\{$ anne, silvia, marc $\}$, and

$$
\begin{aligned}
B_{P}= & \left\{\operatorname{parent}(x, y) \mid x, y \in U_{P}\right\} \cup\left\{f \operatorname{father}(x, y) \mid x, y \in U_{I}\right. \\
& \left\{\operatorname{mother}(x, y) \mid x, y \in U_{P}\right\} \cup\left\{\operatorname{anc}(x, y) \mid x, y \in U_{P}\right\}
\end{aligned}
$$

## Example-cont.

$$
\begin{array}{ll}
\operatorname{anc}(X, Y) \leftarrow & \operatorname{parent}(X, Y) . \\
\operatorname{anc}(X, Z) \leftarrow & \operatorname{anc}(X, Y), \operatorname{parent}(Y, 2 \\
\operatorname{parent}(X, Y) \leftarrow & \text { father }(X, Y) . \\
\operatorname{parent}(X, Y) \leftarrow & \text { mother }(X, Y) . \\
\text { mother }(\text { anne, silvia }) . & \text { mother (anne, marc). }
\end{array}
$$

- Herbrand Base: 4 binary predicates, and for each, 3 possible assignments for each argument: $B_{P}=4 \times 3 \times 3=36$.
- Herbrand Interpretations (HIs): There are $2^{\left|B_{P}\right|}$ subsets of $B_{P}-2^{36}$ for this program.
- With infinite universe we have an infinite number of interpretations.


## The Models of a Program

 Section 8.9 in Advanced Database SystemsMorgan Kaufmann, 1997

## Ground Instances of a Rule

Let $r$ be a rule in a program $P$. ground $(r)$ denotes the set of ground instances of $r$ (i.e., all the rules obtained by assigning to the variables in $r$, values from the Herbrand universe $U_{P}$ ).

$$
\operatorname{parent}(\mathrm{X}, \mathrm{Y}) \leftarrow \operatorname{mother}(\mathrm{X}, \mathrm{Y}) .
$$

With 2 variables and $U_{P}=3$, $\operatorname{ground}(r)$ has $3 \times 3$ rules: parent(anne, anne) $\leftarrow \quad$ mother(anne, anne). parent (anne, marc) $\leftarrow \quad$ mother (anne, marc). parent(silvia, silvia) $\leftarrow$ mother(silvia, silvia)

## Ground version of a program

The ground version of a program $P$, denoted ground $(P)$, is the set of the ground instances of its rules:

$$
\operatorname{ground}(P)=\{\operatorname{ground}(r) \mid r \in P\}
$$

## Models of a Program

Let $I$ be an interpretation for a program $P$. If an atom $a \in I$ we say that $a$ is true, otherwise we say that $a$ is false. Conversely for negated atoms
$\neg a$.
Satisfaction: A rule $r \in P$ is said to hold true in interpretation $I$, or to be satisfied in $I$, if every instance of $r$ is satisfied in $I$.
Model. An interpretation $I$ that satisfies all the rules in $\operatorname{ground}(P)$ is said to be a model for $P$

## Minimal Models and Least Models

- A model $M$ for a program $P$ is said to be a minimal model for $P$ if there exists no other model $M^{\prime}$ of $P$ where $M^{\prime} \subset M$.
- A model $M$ for a program $P$ is said to be its least model if every model $M^{\prime}$ of $P$ has the property that $M^{\prime} \supseteq M$.
Model Intersection Property. Let $P$ be a positive program, and $M_{1}$ and $M_{2}$ be two models for $P$. Then, $M_{1} \cap M_{2}$ is also a model for $P$.
Theorem: Every positive program has a least model.

