
ATLAS: a Small but Complete Extension of
SQL

for Data Streams and Data Mining
Carlo Zaniolo*

*Joint Work with Haixun Wang, Yan-Nei Law, Richard Luo
UCLA – p.1/25

Outline

• The problems of SQL with new application areas
• ATLAS: native extensibility and Turing

completeness in SQL
• Data Mining Applications
• Data Streams: nonblocking computations
• Data Streams: windows and other new constructs
• Ongoing work and conclusion

UCLA – p.2/25

Flexibility, Expressivity, Extensibility:
not SQL Forte

• New applications have severely challenged SQL,
answered with new constructs by standard committees

• O-R extensions help (e.g., user-defined functions written
in external languages)

• But critical applications areas cannot be supported by
O-R DBs: e.g., Data Mining and Data Streams

• The ATLAS language and system adds native
extensibility and Turing completeness to SQL

• Our claim: these features improve DBMSs ability to
support new application area. E.G. ATLAS is effective on
both Data Mining and Data Streams applications

UCLA – p.3/25

Extending SQL for DBs: User Define
Aggregates (UDAs)

Aggregates are functions that process a stream of values, on
the basis of whether the current item is

• The first value—INITIALIZE state,
• Every other successive value—ITERATE state,
• The EOF marker—TERMINATE state
• The calling query generates the streams—one for each

GROUP BY— and set the states

This way of defining UDAs is similar to that used by Postgres,
SQL3, Aurora, et.— but they use procedural languages.

ATLaS aggregates take streams as input and return streams

as output (e.g., online aggregates)
UCLA – p.4/25

Example: Define Average

AGGREGATE myavg(Next Int) : Real
{ TABLE state(sum Int, cnt Int);

INITIALIZE : {
INSERT INTO state VALUES (Next, 1);

}
ITERATE : {

UPDATE state SET sum=sum+Next, cnt=cnt+1;
}
TERMINATE : {

INSERT INTO RETURN
SELECT sum/cnt FROM state;

}
}

UCLA – p.5/25

OnLine Average: returning results
every 200 tuples

AGGREGATE online avg(Next Int) : Real
{ TABLE state(sum Int, cnt Int);

INITIALIZE : {
INSERT INTO state VALUES (Next, 1);

}
ITERATE : {

UPDATE state SET sum=sum+Next, cnt=cnt+1;
INSERT INTO RETURN

SELECT sum/cnt FROM state
WHERE cnt % 200 = 0;

}
TERMINATE : {
}

}

UCLA – p.6/25

Calling UDAs

SELECT Sex, online avg(Sal)
FROM employee
WHERE YoB ¡ 1980
GROUP BY Sex;

UCLA – p.7/25

The Power of a Stream-oriented
Computation on DB Tables

• UDAS make ATLAS Turing Complete—i.e.,
capable of expressing every possible computable
function on the database

• The function is encoded by the TM, the DB
becomes the input tape, and then ATLAS is used
to implement the instructions of the TM.

UCLA – p.8/25

Data Streams

Data streams are relations—but fleeting ones:
• Can’t wait for the end of input: Blocking queries

must be avoided. Results must be returned for
each new tuple.

• Short Memory: past grows unbounded and limited
memory available (e.g., interval-based or
count-based window)

UCLA – p.9/25

Data Streams and Blocking

We want to characterize (Non)Blocking properties of
operators and queries that are fundamental for data
streams, by studying:

• the blocking/nonblocking properties of operators
independent of the language in which they are expressed

• the blocking/nonblocking properties of UDAs expressed
in ATLAS

• the class of stream functions expressible by nonblocking
operators

• Determine the power of Relational Algebra (RA), SQL,
and ATLAS for nonblocking computations.

UCLA – p.10/25

Blocking Query Operators

• Blocking Query Operator [PODS02]: ‘One unable to
produce the first tuple of the output until it has seen the
entire input.’—I.E. until it has detected the end of input.
- e.g., ATLAS UDAs which only RETURN values in
TERMINATE are blocking

• NonBlocking Query Operator: one that produces all of the
tuples in the output before detecting the end of of input
- e.g., Atlas UDAs where RETURN only appears in ITERATE

and/or INITIALIZE.
• Partially blocking operators: those that return some of

the output before they have detected the end of input,
and the rest at that point
- e.g., ATLAS UDAs with RETURN in TERMINATE and also in
ITERATE and/or INITIALIZE.

UCLA – p.11/25

Computable Functions Expressible
using NonBlocking Queries

• Characterize NB: the class of functions
expressible via nonblocking computations
(independent of any specific language)

• Identify the NB subsets of various query
languages (QLs):
– what are the NB operators of RA?
– what are NB-subsets of SQL and ATLAS?

• Study the expressive power of NB QLs:
– what queries can be expressed by the NB
subsets of RA, SQL, or ATLAS?
– For which query classes are they complete?

UCLA – p.12/25

The NB-class on Sequences

• Let L = t1, . . . , tk, . . . , tn be a sequence of length n.
Then S = t1, . . . , tk will be said to be a presequence of
L, denoted S v L

• v defines a partial order (reflexive, transitive, and
antisymmetric)

• NB Characterization: A function F (S) on a sequence S

can be computed using a non-blocking operator, iff F is
monotonic with respect to the partial ordering v.

UCLA – p.13/25

Completeness

• Proposition: Every Monotonic function can be
expressed by a nonblocking ATLAS UDA (i.e.,
without TERMINATE).

• So Atlas is also NB-complete.

UCLA – p.14/25

Presequences and Relations

• Let R1 and R2 be sequences. We write R1 ⊆ R2 to denote
that every tuple in R1 is contained in R2.

• For presequences: R1 v R2 ⇒ R1 ⊆ R2

• Let R1 ≡ R2 denote that R1 ⊆ R2 ∩ R2 ⊆ R1. Thus R1 and
R2 are equivalent modulo repetitions (idempotence) and
reordering (commutativity). Let ci(R) be the class of
sequences equivalent to R. For sets, ⊆ defines a boolean
lattice.

• Let R1 and R2 be sequences and ci(R1) and ci(R2) be their
corresponding sets, then R1 v R2 ⇒ ci(R1) ⊆ ci(R2)

UCLA – p.15/25

Mappings on Relations

Single-Valued functions on relations. Let F be a function on the
representations of relations in a certain D. If F (R1) ≡ F (R2) for
any pair of sequences R1 ≡ R2 representing the same relation
then we say that F is a single-valued function on relations in D.

• Codd’s RA operators and expressions of such operators are
single valued (SV) functions on their operand relation

• For SQL-2 min and max and the distinct version of sum,
count, and avg are SV

• Continuous count, which returns {1, . . . , n} on a set of
cardinality n are SV

• Continuous-sum is not SV. In SQL the ALL versions of
UNION, EXCEPT, sum, count, avg, and some SQL:1999
OLAP constructs are not

UCLA – p.16/25

Monotonic Query Operators on
Relations

• Theorem. Single-valued functions on relations can be realized
by non-blocking computations iff they are monotonic w.r.t. ⊆.

• RA: Projection, selection, Cartesian Product, Set
Union, and Set Difference.

• In terms of expressive power, RA defines relational
completeness. The queries expressible in RA are also
called FO (first order queries). FO defines the
expressive power of several query
languages—relational calculus, NR Datalog, etc.

• NB-RA: All above operators but set difference, which
is not monotonic

• Only NB-RA can be used on data streams.

UCLA – p.17/25

Query Languages and Data Streams

• A main focus of research for the last 30 years: how to
extend FO languages to support new application
domains

• For data streams, only queries in NB-FO can be
supported. NB-FO: subsets of monotonic queries in
FO.

• Can NB-RA express all the queries in NB-FO?
– e.g., R1 ∩ R2 = R1 − (R2 − R1) can also expressed
using joins (i.e., Cartesian Product an selection)

• But many monotonic queries expressible in RA cannot
be expressed in NB-RA.

• NB-RA is not complete for NB-FO!

UCLA – p.18/25

Example: Until and Coalesce Queries

• nothing yet

UCLA – p.19/25

NB-SQL

• Constructs such as EXCEPT, NOT EXIST, and all the
aggregates must be left out from NB-SQL

• In addition to queries, such as until and coalesce, we
loose queries such:
In an EMP table find all the departments with more than
K employees—HAVING COUM(EMP.*) >K.
This is a monotonic query, which cannot be expressed
in NB-SQL

• Recursion (normally not allowed on data stream
queries) and a very smart optimizer could solve some
of these problems

• Also the problem only affect the nonmonotonic portion
of the query. Thus, e.g., for a query R1 − R2 only R2

cannot be a stream: there is no problem with R1.
UCLA – p.20/25

Query Languages for Data Streams

• Current research projects on data streams are based
on SQL and relational languages

• Totally unaware of the loss of expressive power they
suffer because of the NB limitation—and expressive
power was already a sore handicap of QLs before this
injury

• Punctuation and Windows: interesting and useful
concepts that transform some blocking queries into
nonblocking ones. However they do not seem to
address the problem of expressive power.

• A better solution is needed: actually a quantum leap.

UCLA – p.21/25

The Quantum Leap

• ATLAS is Turing Complete
• An NB-complete language. One that can express all

the monotonic functions (on the database) expressible
in by a Turing machine.

• NB-UDAs: those where TERMINATE is missing or empty
• NB-ATLAS: NB-SQL + NB-UDAs
• Theorem: NB-ATLAS is NB-Complete.

UCLA – p.22/25

Data Streams and Windows

Data streams are relations—but fleeting ones:
• Can’t wait for the end of input: Blocking queries

must be avoided. Results must be returned for
each new tuple.

• Short Memory: past grows unbounded and limited
memory available.
– Various kinds of synopses and approximations
can be used
– E.g., Interval-based or count-based windows.

UCLA – p.23/25

Windows like CQL

STREAM calls(customer id Int, type Char(6), minutes Int,
Tstamp: Timestamp) SOURCE mystream;

SELECT AVG(S.minutes)
FROM Calls S [PARTITION BY S.customer id

RANGE 5 MINUTES PRECEDING
WHERE S.type = ’Long Distance’]

• With windows, non-blocking aggregates can be applied to
streams

• In ATLAS we have extended the definition of UDAs to work
with windows

• We follow SQL:1999 semantics, where windows can only be
used as aggregate modifiers.

UCLA – p.24/25

Joins on Streams

• Call is a stream. List the length of every call:
SELECT O1.call_ID, O2.time - O1.time
FROM Outgoing O1, Outgoing O2
WHERE (AND O1.call_ID = O2.call_ID

AND O1.event = start
AND O2.event = end)

• For this we would need infinite memory. Some
approximation is needed.

• We can use a window of, say, one hour, to hold every
calls for one hour. The window is basically treated as a
table. The join will return lengths for calls shorter than
one hour.

• This is not an efficient approximation. UDAs can be
much more efficient

UCLA – p.25/25

	Outline
	Flexibility, Expressivity, Extensibility: not SQL Forte
	Extending SQL for DBs: User Define Aggregates (UDAs)
	Example: De{f}ine Average
	OnLine Average: returning results every 200 tuples
	Calling UDAs
	The Power of a Stream-oriented Computation on DB Tables
	Data Streams
	Data Streams and Blocking
	Blocking Query Operators
	Computable Functions Expressible using NonBlocking Queries
	The $cal NB$-class on Sequences
	Completeness
	Presequences and Relations
	Mappings on Relations
	Monotonic Query Operators on Relations
	Query Languages and Data Streams
	Example: Until and Coalesce Queries
	${cal NB}$-SQL
	Query Languages for Data Streams
	The Quantum Leap
	Data Streams and Windows
	Windows like CQL
	Joins on Streams

