
www.odtug.com ODTUG 2001

NEW SQL OLAP FUNCTIONS FOR EVERYONE
Kenneth M. Guion, QED Solutions, Incorporated

Introduction
Did you ever want to find the top two salary earners in each department? Ever want to calculate a three-month moving
average? Now starting with Oracle 8.1.6, you can write the SQL statements you have always wanted and the one’s you have
never thought possible. Oracle has added a plethora of new analytical and statistical functions that can be called by any SQL
statement in any application. This paper will help you learn about new OLAP (on-line analytical procession) and Business
Intelligence functions that have been introduced since you first learned Oracle. It will specifically cover the basics of Oracle’s
new Analytic Functions such as ROLLUP and CUBE; new functionality for our old Aggregate functions such as SUM and
AVG; and how to use new “windowing” and “lag/lead” functionality to calculate cumulative totals, moving averages, and
inter-row calculated values such as period-to-period growth. By utilizing these new built in functions, everyone can add a
little DSS (Decision Support System) and Data Warehousing features into any application.

Environment
This paper is based on Oracle8i Release 2 (8.1.6) or later. Some of the commands and options in this paper such as “In-Line”
views have been around since late Oracle 7. The examples in this paper use three simple tables: CLERKS,
CLERK_DAILY_SALES, and TOTAL_SALES. The examples are also designed to demonstrate a specific feature, even if
they are impractical or possibly a better way to achieve the same thing exists.

Example Schema

SQL> DESC clerks

 Name Null? Type
 --------- -------- -----------
 CLERK NOT NULL VARCHAR2(6)
 AGE NOT NULL NUMBER

SQL> DESC clerk_daily_sales

 Name Null? Type
 --------- -------- -----------
 SDATE NOT NULL DATE
 CLERK NOT NULL VARCHAR2(6)
 QTY NUMBER

SQL> DESC total_sales

 Name Null? Type
 --------- -------- -----------
 CLERK NOT NULL VARCHAR2(6)
 PRODUCT VARCHAR2(7)
 QTY NUMBER

New SQL OLAP Functions… Guion

www.odtug.com ODTUG 2001

Aggregate Functions
Some of our applications have large amounts of data that simply cannot be interpreted at their lowest level. They must be
analyzed and viewed at a summary or aggregate level to be able to make decisions efficiently. A common requirement of these
DSS applications is to provide this aggregate data across many dimensions of the data. A dimension is a method of
categorizing data such as geography, time, product, etc.

To do this, Oracle has added two new Aggregate Functions ROLLUP and CUBE. Each allows a standard SELECT statement
to return subtotals at increasing levels of aggregation. These new functions will not only simplify your SQL code, but the
resulting queries will be quicker and mo re efficient. Traditional methods were typically convoluted, contain multiple accesses
to the same table(s), and are often difficult to optimize.

ROLLUPs
Suppose we wanted a report that showed the total sales for each product by clerk. Additionally, we wanted to see the total
sales for each clerk and a grand total for all clerks. In the ”good ol’ days” of COBOL, this was commonly referred to as a
control-break report. The dimensions in this case would be both clerk and product. In order to achieve this report using a
pure SQL solution, we would typically use three queries (UNION-ed together). The first query provides the clerk-product
totals; the second, the clerk totals; and the third, the grand total.

Now with Oracle 8i we can accomplish the same thing using a ROLLUP. A ROLLUP is an extension to the GROUP BY clause
used to calculate and return subtotals and a grand total as additional rows of the query efficiently. These additional rows are
the rows that would be created by the two UNION SELECT portions of a pure SQL solution. The new ROLLUP operation
creates these rows with only one access to the TOTAL_SALES table versus the traditional UNION method, which would
have had to access the TOTAL_SALES table three separate times.

Simple ROLLUP Example

SQL> SELECT clerk, product, SUM(qty) qty
 2 FROM total_sales
 3 WHERE clerk IN ('SCOTT','FRED')
 4 GROUP BY ROLLUP(clerk, product);

CLERK PRODUCT QTY
------ ------- ----
FRED APPLE 5
FRED BANANA 9
FRED GRAPE 2
FRED 16 ßß New Subtotal row created by ROLLUP function
SCOTT APPLE 5
SCOTT BANANA 2
SCOTT GRAPE 7
SCOTT 14 ßß New Subtotal row created by ROLLUP function
 30 ßß New Grand total row created by ROLLUP function

9 rows selected.

A ROLLUP produces progressive subtotals for each column in the ROLLUP operation moving right to left. Again, in our
example, ROLLUP will produce a subtotal for each product within a clerk, a subtotal for each clerk, and a grand total for all
clerks. Although a ROLLUP can be achieved using client side tools such as SQL*PLUS using BREAK and COMPUTE, these
tools can place a significant and unnecessary load on the middle or client tier. The ROLLUP command places the load on the
database tier (where it belongs).

New SQL OLAP Functions… Guion

www.odtug.com ODTUG 2001

CUBEs
Consider the case where you want to get subtotals not only for each clerk, and product within clerk, but also for each product
across clerks. The CUBE operator works similar to the ROLLUP operator, but creates subtotals for all possible combinations
of the columns contained in the CUBE list. CUBE is particularly helpful when your dimensions are not part of the same
hierarchy (i.e. day, month, year versus city, state, country). Note, however, that ROLLUPs and CUBEs are independent of any
hierarchy meta-data that can now be stored in dictionary for query rewrites etc.

Simple CUBE Example

SQL> SELECT clerk, product, SUM(qty) qty
 2 FROM total_sales
 3 WHERE clerk IN ('SCOTT','FRED')
 4 GROUP BY CUBE(clerk, product);

CLERK PRODUCT QTY
------ ------- ----
FRED APPLE 5
FRED BANANA 9
FRED GRAPE 2
FRED 16 ß Sub total row created by ROLLUP or CUBE function
SCOTT APPLE 5
SCOTT BANANA 2
SCOTT GRAPE 7
SCOTT 14 ß Sub total row created by ROLLUP or CUBE function
 APPLE 10 ßß NEW Sub total row created only by CUBE function
 BANANA 11 ßß NEW Sub total row created only by CUBE function
 GRAPE 9 ßß NEW Sub total row created only by CUBE function
 30 ß Grand total row created by ROLLUP or CUBE function

12 rows selected.

Subtotals created by CUBE would be synonymous with those created for a cross-tab or matrix type report. In the example
above, you see that three additional rows (the product sub totals) were created by the use of CUBE rather than ROLLUP. In a
traditional pure SQL solution, even another table access would be needed for a total of four scans of the CLERKS table to
create a comparable result versus using the CUBE function.

Grouping Functions
What happens when one of the columns that you are aggregating on allows a NULL value? The question then becomes
“does the NULL value for a column indicate a newly created subtotal (or aggregate) row or is it a normal row that simply has a
NULL value for that column?”

In order to help distinguish what rows are subtotals, Oracle created the GROUPING function. GROUPING returns the value
“1” if the row is a subtotal or grand total row created by the ROLLUP or CUBE operator and returns a “0” if it is a normal row
returned by the query. Consider the example below using the GROUPING function.

New SQL OLAP Functions… Guion

www.odtug.com ODTUG 2001

Distinguishing a NULL column value from an Aggregate Total row using the GROUPING function

SQL> SELECT
 2 clerk, GROUPING(clerk) gc,
 3 product, GROUPING(product) gp,
 4 SUM(qty) qty
 5 FROM total_sales
 6 WHERE clerk IN ('JEFF','TIM')
 7 GROUP BY ROLLUP(clerk, product);

CLERK GC PRODUCT GP QTY
------ --- ------- --- ----
JEFF 0 APPLE 0 3
JEFF 0 GRAPE 0

JEFF 0 <NULL> 0 6 ß Even though PRODUCT column is NULL, the grouping
 Function returns a zero indicating a normal row.
JEFF 0 <NULL> 1 9 ß Grouping function returns a one; therefore this
 Is a subtotal row created by the ROLLUP function.
TIM 0 APPLE 0 7
TIM 0 BANANA 0 8
TIM 0 GRAPE 0 9
TIM 0 <NULL> 1 24
<NULL> 1 <NULL> 1 33

The extra rows created by the ROLLUP and CUBE statements are created during the GROUP BY operation; and therefore, the
HAVING clause can be used with the GROUPING function to filter results to include or exclude certain aggregate or (subtotal)
rows.

Here is an example of a query that retrieves only the extra subtotal and grand total rows created by the CUBE statement.

Using HAVING clause to filter out Non Aggregate CUBE rows

SQL> SELECT clerk, product, SUM(qty) qty
 2 FROM total_sales
 3 WHERE clerk IN ('SCOTT','FRED')
 4 GROUP BY CUBE(clerk, product)
 5 HAVING GROUPING(clerk) = 1 OR GROUPING(product) = 1;

CLERK PRODUCT QTY
------ ------- ----
FRED 16 ß Sub total row created by ROLLUP or CUBE function
SCOTT 14 ß Sub total row created by ROLLUP or CUBE function
 APPLE 10 ß Sub total row created only by CUBE function
 BANANA 11 ß Sub total row created only by CUBE function
 GRAPE 9 ß Sub total row created only by CUBE function
 30 ß Grand total row created by ROLLUP or CUBE function

In all of our examples above, I have used the SUM function. While it is probably the most common, you can use other
functions such as COUNT, AVG, MIN, MAX, etc. And since the ORDER BY is the last operation performed, the subtotal and
grand total rows are sorted among the rest of the rows returned by the query. Be careful to sort these rows into a logical
position so that they can be properly interpreted by the user.

New SQL OLAP Functions… Guion

www.odtug.com ODTUG 2001

Analytic Functions
Just beyond ROLLUP and CUBE is a new family of functions commonly referred to as Analytic Functions. These functions
can be broken down into four groups: Ranking Functions, Reporting Functions, Window Functions, Lag/Lead Functions. As
with CUBE and ROLLUP, the new analytic functions als o increase developer productivity by minimizing the code that needs
to be written. They also are optimized and actually perform better than traditional methods, which typically required
convoluted, contained self-joins, and were often difficult to optimize.

RANKING FUNCTIONS
Ranking functions allow us to easily determine how a given row ranks or compares to other rows in the set. Functions
included are RANK, DENSE_RANK, CUME_DIST, PERCENT_RANK, NTILE, RATIO_TO_REPORT. Each function allows
the data to be ranked based on a single or multiple expressions thereby decreasing the chances of ties.

Now suppose our user wants a report that shows a list of clerks, their sales, and a ranking based on their ‘APPLE’ sales. The
syntax looks a little strange, but it’s easy to understand.

Simple Ranking Functions Example

SQL> SELECT clerk, qty,
 2 RANK() OVER (ORDER BY qty DESC) AS rank,
 3 DENSE_RANK() OVER (ORDER BY qty DESC) AS dense,
 4 RANK() OVER (ORDER BY qty DESC, clerk) AS urank
 5 FROM total_sales
 6 WHERE product = 'APPLE'
 7 ORDER BY qty DESC, clerk;

CLERK QTY RANK DENSE URANK
------ ---- ----- ------ ------
TIM 7 1 1 1

FRED 5 2 2 2 ß Notice RANK and DENSE RANK doesn’t split ties,
 both FRED and SCOTT are ranked 2nd.
SCOTT 5 2 2 3 ß but using a unique sort clause will force ties
 in the Qty column to be split (see urank).
JEFF 3 4 3 4 ß Also RANK skips 3rd and ranks Jeff at 4th,
 but DENSE RANK ranks the next person JEFF at 3rd
ALEX 1 5 4 5

In the above example we see that using a non-unique sort specification of QTY causes both FRED and SCOTT who have sales
of five to be ranked equally with a ranking of second. The difference between RANK and DENSE_RANK is that
DENSE_RANK does not skip any ranking positions after a tie. Looking at our example we see that JEFF has a ranking of
fourth using the RANK function, and no one has a ranking of third with the RANK functions since two clerks tied for second.
With DENSE_RANK, JEFF is considered third even though two clerks tied for second. If we don’t want any ties, then more
columns or expressions will have to be added to the ORDER BY clause to create a unique sort.

Processing Order
Queries with analytic functions are executed in three primary steps. The first step performs all WHERE, GROUP BY and
HAVING clauses and sends the results to the second step where the analytic functions are calculated. Finally in the third
step, the rows are ordered by the SELECT statements ORDER BY clause. This execution order allows for normal functions

New SQL OLAP Functions… Guion

www.odtug.com ODTUG 2001

such as SUM, AVG, COUNT, etc. that are created during the GROUP BY phase to be used in or by the new analytic functions.
In addition since ROLLUP and CUBE generated total rows are calculated during the GROUP BY phase, these rows will also be
included in any Analytic function processing.

Here we rank clerks, by their total product sales rather than just their ‘APPLE’ sales, and we get the ratio of their individual
sales to total sales for the group.

A demonstration of Processing Order and Raito to Report

SQL> SELECT clerk, SUM(qty) qty,
 2 RANK() OVER (ORDER BY SUM(qty) DESC, clerk) AS rank,
 3 RATIO_TO_REPORT(SUM(qty)) OVER () AS ratio
 4 FROM total_sales
 5 GROUP BY clerk
 6 ORDER BY qty DESC, clerk;

CLERK QTY RANK RATIO
------ ---- ----- -----
TIM 24 1 0.33 ß 24 / (24 + 16 + 14 + 9 + 9)
FRED 16 2 0.22
SCOTT 14 3 0.19
ALEX 9 4 0.13
JEFF 9 5 0.13

Notice now that the RANK function is actually ordered by the Aggregate SUM function that is calculated during the GROUP
BY phase. Also note the syntax of the RATIO_TO_REPORT function. There is no ORDER BY clause and the QTY column
is a typical looking argument.

Partitions
Suppose that we wanted to also provide a ranking of sales within each clerk. To accomplish this task we would need to use
the PARTITION BY clause. The first thing you will need to realize is that the PARTITION BY clause of these functions is
totally unrelated and independent of Oracle 8’s table partition feature, etc. The PARTITION BY clause breaks the data into
numerous datasets based on the list of columns, non-analytic functions, and/or expressions listed. The analytic function is
then calculated independently on each partition, which means, for example, that the ranking functions reset their values etc.
within each partition.

A single query can have multiple analytic functions, each with a different partitioning scheme. If a query contains an analytic
function with no PARTITION BY clause, the whole query is actually treated as one partition.

The following query ranks the combination of clerks and products by their sales, ranks individual clerks by their sales within
each product, and ranks individual product sales by each clerk. For those of you who pride themselves in writing very
complex SQL, I will leave the pure traditional SQL solution (with no Analytic Functions) to you.

New SQL OLAP Functions… Guion

www.odtug.com ODTUG 2001

An example of Partitions

SQL> SELECT product, clerk, qty,
 2 RANK() OVER (ORDER BY qty DESC) AS rank,
 3 RANK() OVER (PARTITION BY product ORDER BY qty DESC) AS prank,
 4 RANK() OVER (PARTITION BY clerk ORDER BY qty DESC) AS crank
 5 FROM total_sales
 6 WHERE clerk IN ('TIM','ALEX')
 7 ORDER BY product, clerk;

PRODUCT CLERK QTY RANK PRANK CRANK
------- ------ ---- ----- ------ ------
APPLE ALEX 1 6 2 3
APPLE TIM 7 3 1 3
BANANA ALEX 3 5 2 2
BANANA TIM 8 2 1 2
GRAPE ALEX 5 4 2 1
GRAPE TIM 9 1 1 1

As with ROLLUP and CUBE, the rows may be sorted when calculating the analytic function value, but that does not
guarantee that the final results will be in the same order. Always use an ORDER BY clause to sort the rows as you desire.
The PARTITION BY clause of each analytic function call causes the data to be sorted differently. Also remember that the
analytic functions are calculated after the statement’s GROUP BY is calculated so that the partitioning itself could be based
on a GROUP BY aggregate result such as SUM.

Ranking Nulls
Oracle treats NULLs as the largest value by default. The new analytic ranking functions, however, give us the choice of
placing NULLs at either the top or the bottom of the rankings by specifying the NULLS FIRST or NULLS LAST keywords
of the function’s ORDER BY clause. Review the following example, which ranks clerks by their GRAPE sales.

Ordering of NULLs Example

SQL> SELECT clerk, qty,
 2 RANK() OVER (ORDER BY qty DESC NULLS FIRST) AS DNF,
 3 RANK() OVER (ORDER BY qty NULLS FIRST) AS ANF,
 4 RANK() OVER (ORDER BY qty DESC NULLS LAST) AS DNL,
 5 RANK() OVER (ORDER BY qty NULLS LAST) AS ANL
 6 FROM total_sales
 7 WHERE product = 'GRAPE'
 8 ORDER BY qty DESC;

CLERK QTY DNF ANF DNL ANL
------ ---- ---- ---- ---- ----
JEFF 1 1 5 5
TIM 9 2 5 1 4
SCOTT 7 3 4 2 3
ALEX 5 4 3 3 2
FRED 2 5 2 4 1

New SQL OLAP Functions… Guion

www.odtug.com ODTUG 2001

Investigating the DNF (Descending Nulls First) column and the ANF (Ascending Nulls First column, you can see regardless
of whether the function is ordered in descending or ascending order, a Null value is always rated first. Likewise with NULLS
LAST, a null value is always ranked last regardless of the sort order.

Top N Statements
In-Line views is a sub query that you place entirely in the FROM clause and that you give an alias. Any column that you list in
the SELECT column list in the sub query, you can use in the parent or encapsulating query. In-line views in Oracle previous
to version 8i allowed us to avoid creating unnecessary view schema objects. With Oracle 8i, in-line views now allow ordering.

Since you can use an order by clause in an in-line view it is now possible with Oracle 8i to find the top or bottom few rows of a
table easily and efficiently. These queries are referred to as Top-N or Bottom-N queries. Examine the query below, which uses
both an in-line view and a ROWNUM predicate to determine the top two clerks for APPLE sales.

Top 2 apple clerks using a TOP-N query

SQL> SELECT *
 2 FROM
 3 (SELECT clerk, qty
 4 FROM total_sales
 5 WHERE product = 'APPLE'
 6 ORDER BY qty DESC) clerk_sales
 7 WHERE
 8 ROWNUM < 3;

CLERK QTY
------ ----
TIM 7
SCOTT 5 ß Whoops. FRED also sold 5 apples,
 but ROWNUM predicate throws his row away.

Remember that if the ORDER BY clause was moved from the subquery (in-line view) to the top level query, there would be no
guarantee that the top rows would be returned since Oracle sorts the rows after the row numbers are assigned. The ORDER
BY in the in-line view, however, is executed before the rows are assigned a row number; and therefore, we are guaranteed to
get the largest rows.

This query also executes quicker in Oracle 8i as comp ared to the traditional method used in prior versions. This increase is
due to the fact that Oracle recognizes that only two rows are desired so it holds only the two biggest rows fetched so far in
memory rather than sorting the entire table. When a bigger row is read, it discards the smaller row and that row is no longer
considered or sorted any further.

However, the TOP-N statement approach above guarantees only two rows will be returned. In our case, FRED also sold five
apples. We can use a combination of in-line views and analytic functions to produce a report that shows the top two clerks
for each product with ties included.

New SQL OLAP Functions… Guion

www.odtug.com ODTUG 2001

Using an Analytic Function in an In-Line View

SQL> SELECT product, srank, clerk, qty
 2 FROM
 3 (SELECT product, clerk, qty,
 4 RANK() OVER (PARTITION BY product
 5 ORDER BY qty DESC NULLS LAST) AS srank
 6 FROM total_sales
 7 WHERE product IS NOT NULL) clerk_sales
 8 WHERE srank < 3
 9 ORDER BY product, srank;

PRODUCT SRANK CLERK QTY
------- ------ ------ ----
APPLE 1 TIM 7
APPLE 2 SCOTT 5
APPLE 2 FRED 5 ß Nested rank query allows us to include FRED with 5
BANANA 1 FRED 9 apple sales to be included.
BANANA 2 TIM 8
GRAPE 1 TIM 9
GRAPE 2 SCOTT 7

Reporting Aggregate Functions
Whereas the Ranking functions introduced totally new functions such as RANK and RATIO_TO_REPORT that could be
calculated for a query or partition, existing Aggregate functions such as SUM and AVG have been enhanced and can now be
calculated over a query or partition. Before, these functions caused only one row per group to be returned, now with the use
of the OVER clause, these functions can be used to place these values as columns and as part of each row in the query.

As with the Ranking Functions, each Reporting Aggregate Functions can be partitioned differently; and therefore, the
Reporting Aggregate Function would also be reset at each partition border.

Simple Aggregate Function Example

SQL> SELECT product, clerk, qty,
 2 SUM(qty) OVER () AS sum,
 3 SUM(qty) OVER (PARTITION BY product) AS psum
 4 FROM total_sales
 5 WHERE clerk IN ('SCOTT','FRED')
 6 ORDER BY product, clerk;

PRODUCT CLERK QTY SUM PSUM
------- ------ ---- ---- ----
APPLE FRED 5 30 10 ß PSUM=10=5+5 and SUM=30=5+5+9+2+2+7
APPLE SCOTT 5 30 10 “”
BANANA FRED 9 30 11 ß PSUM=11=9+2 “”
BANANA SCOTT 2 30 11 “”
GRAPE FRED 2 30 9 ß PSUM=9=2+7 “”
GRAPE SCOTT 7 30 9 “”

Reviewing the above query, we see that a column SUM contains the total of all the products and clerks sales. By definition
this column would have the same value for all columns of the query. The PSUM (Product Sum) column shows the total sales
for that product.

New SQL OLAP Functions… Guion

www.odtug.com ODTUG 2001

With the use of In-Line views, comparisons can also be made between an aggregate value and the individual detail row
values. For example, comparisons can be made between the average sales and an individual clerk’s sales. The following
query returns all clerks who sold above the average.

Comparing Reporting Aggregate values to detail values example

SQL> SELECT clerk, qty, clerk_avg
 2 FROM (SELECT clerk, SUM(qty) qty,
 3 AVG(SUM(qty)) OVER () AS clerk_avg
 4 FROM total_sales
 5 GROUP BY clerk) clerk_sales
 6 WHERE qty > clerk_avg
 7 ORDER BY qty DESC;

CLERK QTY CLERK_AVG
------ ---- ----------
TIM 24 14.4
FRED 16 14.4

Window Aggregate Functions
Windows are used to calculate cumulative and moving average values for each row. If you specify an ORDER BY in your
Analytic Function, your Reporting Aggregate Function becomes a Window Aggregate Function. Specifically windows can
be used to limit the rows in the query (or partition) that are used in calculating the analytic function. In fact all analytic
functions operate in a window. If one is not defined, the whole partition or query is considered the window.

Simply specifying a starting point and/or ending point defines a window, and these points may move or be fixed. A window
can be as large as the whole partition (or query) or as small as a one row. Windows are either Physical or Logical, and Logical
windows are either based on a Time Interval or a Value Range.

Physical windows are identified by the ROWS keyword and logical by the RANGE keyword. The span of rows included in the
window is defined using the PRECEDING, the FOLLOWING, or the BETWEEN start AND end phrase. To specify a window
that always starts with the first row use the UNBOUNDED with the PRECEDING keyword as the start. Like wise use
UNBOUNDED FOLLOWING to specify a window that always ends with the last row in the partition (or query). Finally,
CURRENT ROW can be used to specify that the window begins or ends at the current row.

A sliding window would be used to calculate items such as a moving average, whereas a running total would be calculated by
defining a window with a fixed start point of the first row (UNBOUNDED PRECEDING) and the last row being the current row
(CURRENT ROW).

Running Total
Simply simply specifying a unique ORDER BY clause in a normal Reporting Aggregate Function easily creates a running total.
It will assume the default window definition, which is a logical window with the starting point of the first row and an ending
point of the last row (i.e. RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW).

New SQL OLAP Functions… Guion

www.odtug.com ODTUG 2001

Simple Window example to calculate a Running Total

SQL> SELECT TO_CHAR(sdate,'Dy, Mon DD') s_date, qty,
 2 SUM(qty) OVER () AS sum,
 3 SUM(qty) OVER (ORDER BY sdate) AS rsum ß Just added an order by clause
 4 FROM clerk_daily_sales
 5 WHERE clerk = 'FRED'
 6 ORDER BY sdate;

S_DATE QTY SUM RSUM
----------- ---- ---- -----
Thu, Jan 11 2 30 2 ß RSUM = 2
Fri, Jan 12 1 30 3 ß RSUM = 2 + 1
Tue, Jan 16 6 30 9 ß RSUM = 2 + 1 + 6
Wed, Jan 17 5 30 14 . . .
Thu, Jan 18 4 30 18
Fri, Jan 19 3 30 21
Mon, Jan 22 9 30 30

The results are kind of surprising without any definition of the starting point or ending point of the window. In the above
example, by simply adding an ORDER BY clause to the Aggregate Function, we have created a Window and therefore a
running total.

Physical Windows
Physical windows are defined by using the ROWS keyword and by specifying the actual (“physical”) number of rows (called
the “offset”) before and after the current row that should be included in the window. The offset must evaluate to a positive
integer. Physical windows can be ordered based on multiple columns or expressions. For physical windows, the ORDER BY
expression should result in a unique ordering so that the result given is “deterministic” (or repeatable).

Let’s say that we want a query that shows us a moving sum of the last four weekdays regardless of whether there were sales
or not.

New SQL OLAP Functions… Guion

www.odtug.com ODTUG 2001

Physical Window Example – Running Total of Last Four Days of Sales

SQL> SELECT TO_CHAR(sdate,'Dy, Mon DD') s_date, qty,
 2 SUM(qty) OVER (ORDER BY sdate
 3 ROWS 3 PRECEDING) AS saledy
 4 FROM clerk_daily_sales
 5 WHERE clerk IN ('FRED')
 6 ORDER BY sdate;

S_DATE QTY SALEDY
----------- ---- -------
Thu, Jan 11 2 2 ß SALEDY = Current (2)
Fri, Jan 12 1 3 ß SALEDY = Current (1) + Row-1(2)
Tue, Jan 16 6 9 ß SALEDY = Current (6) + Row-1(1) + Row-2(2)

 Wed Tue Fri Thu
Wed, Jan 17 5 14 ß SALEDY = Current (5) + Row-1(6) + Row-2(1) + Row-3 (2)

 Whoops! We wanted Wed to include Tue, Mon and Fri, NOT
 the previous Thu (2) sales.

Thu, Jan 18 4 16
Fri, Jan 19 3 18
Mon, Jan 22 9 21

In the above example we see that no sales data is recorded for weekends; however, there were no sales for the government
holiday MLK day (15-Jan-01). What we get with the above physical window is the last four days with sales recorded, not the
last four weekdays. By their very nature, physical windows may not be well suited for sparse data (with gaps in dates etc.).

Time Interval Windows

Logical windows are defined by using the RANGE keyword and can only be ordered based on a single column or expression if
either the PRECEDING or FOLLOWING keywords are used. For Logical Time Interval windows, the INTERVAL keyword is
also used and the order by expression or column must evaluate to a date.

A Time Interval window includes all rows for the current rows day, month, or year as well as all rows whose interval value
(sort expression) falls between the offset specified in the ROWS PRECEEDING and ROWS FOLLOWING clause. For
example, if a time interval window was defined as RANGE INTERVAL ‘2’ MONTHS PRECEEDING then each row in the
partition with the current month or the two preceding months would be included in the calculation of the function. DAY,
MONTH, and YEAR are valid interval keywords.

Again, let’s try to write a query that shows us a moving sum of the last four weekdays regardless of whether there were sales
or not.

New SQL OLAP Functions… Guion

www.odtug.com ODTUG 2001

Logical Time Interval Window Example – Running Total of Last Four Calendar Days

SQL> SELECT TO_CHAR(sdate,'Dy, Mon DD') s_date, qty,
 2 …
 5 SUM(qty) OVER (PARTITION BY clerk
 6 ORDER BY sdate
 7 RANGE INTERVAL ‘3’ DAY PRECEDING) AS caldy
 8 FROM clerk_daily_sales
 9 WHERE clerk IN ('FRED')
 10 ORDER BY sdate;

S_DATE QTY SALEDY CALDY
----------- ---- ------- -------
Thu, Jan 11 2 2 2 ß CALDY = Thu (2)
Fri, Jan 12 1 3 3 ß CALDY = Fri (1) + Thu (2)
Tue, Jan 16 6 9 6 ß CALDY = Tue (6) + Mon () + Sun () + Sat ()

Wed, Jan 17 5 14 11 ß CALDY = Wed (6) + Tue (5) + Mon () + Sun ()

 Whoops! Now we successfully avoid Thu sales
 but now we are missing Fri sales.

Thu, Jan 18 4 16 15
Fri, Jan 19 3 18 18
Mon, Jan 22 9 21 12

Unfortunately the above query gets us the last four calendar days, but fails to recognize weekend. In addition, the above
PARTITION BY clause was not needed, but added just to remind you of the possibilities that exist.

To conquer this request, we will need to base the actual window size for each row to account for weekends. If the current row
is a Monday, Tuesday, or Wednesday the offset should be 5 days to allow for skipping over Saturday and Sunday. Thursday
and Friday rows should still have an offset of 3 days. Below is a correct solution to the problem.

New SQL OLAP Functions… Guion

www.odtug.com ODTUG 2001

Varying Window Size Example – Running Total of Last Four Weekdays

SQL> SELECT TO_CHAR(sdate,'Dy, Mon DD') s_date, qty,
 2 …
 8 SUM(qty) OVER (
 9 ORDER BY sdate RANGE
 10 (CASE WHEN (TO_CHAR(sdate,'DY') IN (‘THU’,’FRI’)) THEN 3 ELSE 5 END)
 11 PRECEDING) AS weekdy
 12 FROM clerk_daily_sales
 13 WHERE clerk IN ('FRED')
 14 ORDER BY sdate;

S_DATE QTY SALEDY CALDY WEEKDY
----------- ---- ------- ------- -------
Thu, Jan 11 2 2 2 2 ß WEEKDY = Thu(2)
Fri, Jan 12 1 3 3 3 ß WEEKDY = Fri(1)+Thu(2)

Tue, Jan 16 6 9 6 9 ß WEEKDY = Tue(6)+Mon()+Sun()+ Sat()+Fri(1)+Thu(2)
 Tue Includes Mon, Fri and Thu sales!

Wed, Jan 17 5 14 11 12 ß WEEKDY = Wed(5)+Tue(6)+Mon()+Sun()+Sat()+Fri(1)
 Wed Includes Tue, Mon and Fri sales!

Thu, Jan 18 4 16 15 15 ß WEEKDY = Thu(4)+Wed(5)+Tue(6)+Mon()
Fri, Jan 19 3 18 18 18 ß WEEKDY = Fri(3)+Thu(4)+Wed(5)+Tue(6)
Mon, Jan 22 9 21 12 21

In the above example, I used the new CASE function instead of using a DECODE or user defined function. Both of those
would also work as well. The CASE function is new to Oracle 8i and allows all comparison operators to be used plus the
ability to use ANDs, ORs, etc. in a single test. In addition, since simple date arithmetic is done in days, a Time Interval window
with an INTERVAL of DAYS is the same as value range window. The above example is really a value range window based on
days.

Value Range Windows
Logical Value Range windows can only be ordered based on a single column or expression if the PRECEDING or
FOLLOWING clause is used and must evaluate to a positive integer.

A Value Range window contains all rows that have the same value as the order by expression of the current row plus all rows
whose value falls between the offset specified in the values PRECEDING and values FOLLOWING clause. For example, if the
current rows order by expression evaluates to 20 and the window is defined as ‘RANGE BETWEEN 5 PRECEDING AND 5
FOLLOWING’, then it would include all rows whose order by expression evaluates between 15 and 25.

The query below finds for each clerk, the average sales for all clerks that are within five years of his/her age.

Value Range Example

New SQL OLAP Functions… Guion

www.odtug.com ODTUG 2001

SQL> SELECT s.clerk, age, SUM(qty) qty,
 2 AVG(SUM(qty)) OVER (ORDER BY age
 3 RANGE BETWEEN 5 PRECEDING AND 5 FOLLOWING) AS avg
 4 FROM clerk_daily_sales s, clerks c
 5 WHERE s.clerk = c.clerk
 6 GROUP BY s.clerk, age
 7 ORDER BY c.age;

CLERK AGE QTY AVG
------ ---- ---- ------
JEFF 30 32 34.00 ß AVG = 34 = (32 + 36) / 2
ALEX 33 36 36.00 ß AVG = 36 = (32 + 36 + 40) / 3
TIM 36 40 37.00 ß AVG = 37 = (36 + 40 + 35) / 3
SCOTT 39 35 35.00 ß AVG = 35 = (40 + 35 + 30) / 3
FRED 42 30 32.50 ß AVG = 32 = (35 + 30) / 2

Remember that the default window (created when just an ORDER BY clause is used) is defined as a logical window with the
definition of RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW. In the example below we see that
RSUM, which just uses an ORDER BY, clause is the same as RASUM which is defined using the default keywords. It is
important to remember that with a logical window, all rows with the current order by value are included. Looking at the first
two rows, both have the order by value of January 11th and therefore both rows will have the same running total of six.

By simply making the ordering unique (i.e. adding CLERK to the ORDER BY clause), the column RSUMU looks more like our
typical running total. It is still a logical window, but since the ordering is unique, no two rows will have the same order by
value(s). ROSUM shows that we can still get the typical running total by specifying a physical window (using the ROWS
keyword), but the results will not be deterministic (or repeatable).

Example of Non Unique sorts with Logical and Physical Windows

SQL> SELECT TO_CHAR(sdate,'Dy, Mon DD') s_date, clerk, qty,

 2 SUM(qty) OVER (ORDER BY sdate) AS rsum,
 3 SUM(qty) OVER (ORDER BY sdate RANGE
 4 BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW) AS rasum,
 5 SUM(qty) OVER (ORDER BY sdate,clerk) AS rsumu,
 6 SUM(qty) OVER (ORDER BY sdate ROWS UNBOUNDED PRECEDING) AS rosum

 7 FROM clerk_daily_sales
 8 WHERE clerk IN ('SCOTT','FRED')
 9 ORDER BY sdate, clerk;

S_DATE CLERK QTY RSUM = RASUM RSUMU = ROSUM
----------- ------ ---- ----- ------ ------ ------
Thu, Jan 11 FRED 2 6 = 6 2 = 2
Thu, Jan 11 SCOTT 4 6 = 6 6 = 6
Fri, Jan 12 FRED 1 10 = 10 7 = 7
Fri, Jan 12 SCOTT 3 10 = 10 10 = 10
Tue, Jan 16 FRED 6 24 = 24 16 = 16
Tue, Jan 16 SCOTT 8 24 = 24 24 = 24
…

New SQL OLAP Functions… Guion

www.odtug.com ODTUG 2001

Lag/Lead Functions
Lag/Lead Functions allows access to values in preceding or following rows and provide for inter row calculations such as
period-to-period changes without expensive self-join operations. Example queries that could be written include “Growth in
earnings from same quarter last year”. Access to a different row’s values are simply made by specifying the offset from the
current row, and a default value can also be used to specify for rows where the offset goes beyond the beginning or end of
the query.

The example below shows a basic use of the LAG and LEAD functions to access a preceding or following row.

Simple Lag/Lead Example

SQL> SELECT TO_CHAR(sdate,'Dy, Mon DD') s_date, qty,
 2 LAG(qty,1,0) OVER (ORDER BY sdate) AS last_day,
 3 LEAD(qty,1,0) OVER (ORDER BY sdate) AS next_day
 4 FROM clerk_daily_sales
 5 WHERE clerk IN ('FRED')
 6 ORDER BY sdate;

S_DATE QTY LAST_DAY NEXT_DAY
----------- ---- ---------- ----------
Thu, Jan 11 2 0 1 ß LAST_DAY = 0 since the Lag function
 specified a zero as the default.
Fri, Jan 12 1 2 6
Tue, Jan 16 6 1 5
Wed, Jan 17 5 6 4
Thu, Jan 18 4 5 3
Fri, Jan 19 3 4 9

Mon, Jan 22 9 3 0 ß NEXT_DAY = 0 since the Lead function
 specified a zero as the default

In order to calculate period-to-period changes with lag / lead functions, the data would have to be dense or with no gaps
thereby the physical offsets would correspond to logical offsets such as periods of time. For example, if the query is to
calculate growth in sales from Q1 in one year to the next, then each quarter must have data so that the preceding fourth row is
always for the same quarter. In the query below the sales growth from two days ago is calculated.

Period-to-Period Example - Growth in Sales from Two Days Ago

New SQL OLAP Functions… Guion

www.odtug.com ODTUG 2001

SQL> SELECT TO_CHAR(sdate,'Dy, Mon DD') s_date, qty,
 2 (qty - LAG(qty,2) OVER (ORDER BY sdate)) /
 3 (LAG(qty,2) OVER (ORDER BY sdate)) * 100 growth
 4 FROM clerk_daily_sales
 5 WHERE clerk IN ('FRED')
 6 ORDER BY sdate;

S_DATE QTY GROWTH
----------- ---- --------
Thu, Jan 11 2
Fri, Jan 12 1
Tue, Jan 16 6 200.00 ß GROWTH = (6 – 2) / 2
Wed, Jan 17 5 400.00 ß GROWTH = (5 – 1) / 1
Thu, Jan 18 4 -33.33 . . .
Fri, Jan 19 3 -40.00
Mon, Jan 22 9 125.00

First and Last Functions
These two functions FIRST_VALUE and LAST_VALUE are really just two more Window Aggregate Functions. They return
the first value in a window and the last value in a window.

Don’t forget that unless UNBOUNDED FOLLOWING is specified, the LAST_VALUE function will return the value of the
current row since it operates over the window and by default a window ends with the current row as shown by the RLQTY
column in the example below. FIRST_VALUE will be as expected, since by default a window is defined to start on the first
row of the partition (or query, i.e. UNBOUNDED PRECEEDING).

 First and Last Value Example

SQL> SELECT TO_CHAR(sdate,'Dy, Mon DD') s_date, qty,
 2 FIRST_VALUE(qty) OVER (ORDER BY sdate) AS fqty,
 3 LAST_VALUE(qty) OVER (ORDER BY sdate) AS rlqty,
 4 LAST_VALUE(qty) OVER (ORDER BY sdate
 5 ROWS BETWEEN UNBOUNDED PRECEDING
 6 AND UNBOUNDED FOLLOWING) AS lqty
 7 FROM clerk_daily_sales
 8 WHERE clerk = 'FRED';

S_DATE QTY FQTY RLQTY LQTY
----------- ---- ----- ------ -----
Thu, Jan 11 2 2 2 ß Window 1/11..1/11 9 ß Window 1/11..1/22
Fri, Jan 12 1 2 1 ß Window 1/11..1/12 9
Tue, Jan 16 6 2 6 ß Window 1/11..1/13 9
Wed, Jan 17 5 2 5 ß Window 1/11..1/14 9
Thu, Jan 18 4 2 4 ß Window 1/11..1/15 9
Fri, Jan 19 3 2 3 ß Window 1/11..1/16 9
Mon, Jan 22 9 2 9 ß Window 1/11..1/17 9

Conclusion

New SQL OLAP Functions… Guion

www.odtug.com ODTUG 2001

If you made it to the end of this paper, I hope you have a good overview of some of the new OLAP functions provided for by
Oracle 8i. With these new functions all kinds of complex queries could be formulated. In the example below the query ranks
and returns by sales only the clerks who sold less than the average of the clerks who are within five years of his age.

SQL> SELECT clerk, qty,
 2 RANK() OVER (ORDER BY qty DESC) rank
 3 FROM (SELECT s.clerk, SUM(qty) qty,
 4 AVG(SUM(qty)) OVER (ORDER BY age
 5 RANGE BETWEEN 5 PRECEDING AND 5 FOLLOWING) AS avg
 6 FROM clerk_daily_sales s, clerks c
 7 WHERE s.clerk = c.clerk
 8 GROUP BY s.clerk, age) clerk_avg
 9 WHERE qty < avg
 10 ORDER BY rank;

CLERK QTY RANK
------ ---- -----
JEFF 32 1
FRED 30 2

In addition, Oracle has also added some statistical functions including linear regression, covariance, and correlation
computations. Please refer to the Oracle documentation for complete details.

