NEw SOQL OLAP FUNCTIONS FOR EVERYONE

Kenneth M. Guion, QED Solutions, Incorporated

Introduction

Did you ever want to find the top two salary earnersin each department? Ever want to calcul ate a three-month moving
average? Now starting with Oracle 8.1.6, you can write the SQL statements you have always wanted and the one' s you have
never thought possible. Oracle has added a plethora of new analytical and statistical functionsthat can be called by any SQL
statement in any application. This paper will help you learn about new OLAP (on-line analytical procession) and Business
Intelligence functions that have been introduced since you first learned Oracle. It will specifically cover the basics of Oracle’s
new Analytic Functions such asROLLUP and CUBE; new functionality for our old Aggregate functions such asSUMand
AVG,; and how to use new “windowing” and “lag/lead” functionality to calculate cumulative totals, moving averages, and
inter-row calculated val ues such as period-to-period growth. By utilizingthese new built in functions, everyone can add a
little DSS (Decision Support System) and Data Warehousing features into any application.

Environment

This paper is based on Oracle8i Release 2 (8.1.6) or later. Some of the commands and optionsin this paper such as*“In-Line”
views have been around since late Oracle 7. The examplesin this paper use three simple tables: CLERKS,

CLERK_DAI LY_SALES, and TOTAL_SALES. The examplesare aso designed to demonstrate a specific feature, even if
they areimpractical or possibly a better way to achieve the same thing exists.

Example Schema

SQL> DESC cl er ks

Name Nul | ? Type
CLERK NOT NULL VARCHAR2(6)
AGE NOT NULL NUMBER

SQL> DESC cl erk_daily_sales

Name Nul | ? Type

SDATE NOT NULL DATE

CLERK NOT NULL VARCHAR2(6)
qQry NUMBER

SQL> DESC total _sales

Name Nul | ? Type

CLERK NOT NULL VARCHAR2(6)
PRODUCT VARCHAR2(7)
Qry NUMBER

www.odtug.com ODTUG 2001

New SQL OLAP Functions... Guion

Aggregate Functions

Some of our applications have large amounts of datathat simply cannot be interpreted at their lowest level. They must be
analyzed and viewed at asummary or aggregate level to be able to make decisions efficiently. A common requirement of these
DSS applicationsisto provide this aggregate data across many dimensions of the data. A dimension isamethod of
categorizing data such as geography, time, product, etc.

To do this, Oracle hasadded two new Aggregate Functions ROLLUP and CUBE. Each allows a standard SELECT statement
to return subtotals at increasing levels of aggregation. These new functions will not only simplify your SQL code, but the
resulting querieswill be quicker and more efficient. Traditional methods were typically convoluted, contain multiple accesses
to the same table(s), and are often difficult to optimize.

ROLLUPs

Suppose we wanted a report that showed the total salesfor each product by clerk. Additionally, we wanted to see the total
salesfor each clerk and agrand total for all clerks. Inthe”good ol’ days’” of COBOL, thiswas commonly referred to asa
control-break report. The dimensionsin this case would be both clerk and product. In order to achieve thisreport using a
pure SQL solution, we would typically use three queries (UNI ON-ed together). The first query provides the clerk-product
totals; the second, the clerk totals; and the third, the grand total.

Now with Oracle 8i we can accomplish the same thing using a ROLLUP. A ROLLUP isan extension to the GROUP BY clause
used to calculate and return subtotals and a grand total as additional rows of the query efficiently. These additional rows are
the rows that would be created by the two UNI ON SELECT portions of a pure SQL solution. The new ROLLUP operation
creates these rows with only one access to the TOTAL_ SALES table versus the traditional UNI ON method, which would
have had to access the TOTAL_ SALES table three separate times.

Simple ROLLUP Example

SQL> SELECT cl erk, product, SUMqty) qty
2 FROM total _sales
3 WHERE clerk IN ('"SCOTT',' FRED)
4 GROUP BY ROLLUP(cl erk, product);

CLERK PRODUCT QTY

FRED APPLE

FRED BANANA

FRED GRAPE

€ New Subtotal row created by ROLLUP function

5
9
2
6
SCOTT APPLE 5
SCOTT BANANA 2
SCOTT GRAPE 7

4 € New Subtotal row created by ROLLUP function

0 <€« New Grand total row created by ROLLUP function

9 rows sel ected.

A ROLLUP produces progressive subtotals for each column in the ROLLUP operation moving right to left. Again, in our
example, ROLLUP will produce a subtotal for each product within aclerk, a subtotal for each clerk, and agrand total for all
clerks. Although a ROLLUP can be achieved using client side tools such as SQL* PLUS using BREAK and COMPUTE, these
tools can place asignificant and unnecessary load on the middie or client tier. The ROLLUP command places the load on the
database tier (where it belongs).

www.odtug.com ODTUG 2001

New SQL OLAP Functions... Guion

CUBEs

Consider the case where you want to get subtotals not only for each clerk, and product within clerk, but also for each product
across clerks. The CUBE operator works similar to the ROLLUP operator, but creates subtotals for all possible combinations
of the columns contained in the CUBE list. CUBE is particularly helpful when your dimensions are not part of the same
hierarchy (i.e. day, month, year versus city, state, country). Note, however, that ROLL UPs and CUBEs are independent of any
hierarchy meta-data that can now be stored in dictionary for query rewrites etc.

Simple CUBE Example

FROM t ot al _sal es
WHERE clerk IN (' SCOTT',' FRED')

SQL> SELECT cl erk, product, SUMqty) qty

2

3
4 GROUP BY CUBE(cl erk, product);

FRED APPLE 5

FRED BANANA 9

FRED GRAPE 2

FRED 16 €& Sub total row created by ROLLUP or CUBE function

SCOTT APPLE 5

SCOTT BANANA 2

SCOTT GRAPE 7

SCOTT 14 €& Sub total row created by ROLLUP or CUBE function
APPLE 10 € NEW Sub total row created only by CUBE function
BANANA 11 € NEW Sub total row created only by CUBE function
GRAPE 9 € NEW Sub total row created only by CUBE function

30 € Grand total row created by ROLLUP or CUBE function

12 rows sel ected.

Subtotals created by CUBE would be synonymous with those created for a cross-tab or matrix type report. Inthe example
above, you see that three additional rows (the product sub totals) were created by the use of CUBE rather than ROLLUP. Ina
traditional pure SQL solution, even another table access would be needed for atotal of four scans of the CLERKS tableto
create acomparabl e result versus using the CUBE function.

Grouping Functions

What happens when one of the columns that you are aggregating on allows a NULL value? The question then becomes
“does the NULL value for acolumn indicate anewly created subtotal (or aggregate) row or isit anormal row that simply hasa
NULL valuefor that column?’

In order to help distinguish what rows are subtotal's, Oracle created the GROUPI NGfunction. GROUPI NGreturns the value
“1" if therow isasubtotal or grand total row created by the ROLLUP or CUBE operator and returnsa“0” if it isanormal row
returned by the query. Consider the example below using the GROUPI NG function.

www.odtug.com ODTUG 2001

New SQL OLAP Functions... Guion

Distinguishing a NULL column value from an Aggregate Total row using the GROUPING function

SQL> SELECT
2 clerk, GROUPI NG(cl erk) gc,
3 product, GROUPING(product) gp,
4 sSuMqty) qty
5 FROM total _sales
6 WHERE clerk IN ('JEFF ,'TIM)
7 GROUP BY ROLLUP(clerk, product);

CLERK GC PRODUCT GP QrTY

JEFF 0 APPLE 0 3
JEFF 0 GRAPE 0
JEFF 0 <NULL> 0 6 <& Even though PRODUCT columm is NULL, the grouping
Function returns a zero indicating a normal row.
JEFF 0 <NULL> 1 9 & Grouping function returns a one; therefore this
Is a subtotal row created by the ROLLUP function.
TIM 0 APPLE 0 7
TIM 0 BANANA 0 8
TIM 0 GRAPE 0 9
TIM 0 <NULL> 1 24
<NULL> 1 <NULL> 1 33

The extrarows created by the ROLLUP and CUBE statements are created during the GROUP BY operation; and therefore, the
HAVI NG clause can be used with the GROUPI NGfunction to filter resultsto include or exclude certain aggregate or (subtotal)
rows.

Hereisan example of aquery that retrieves only the extra subtotal and grand total rows created by the CUBE statement.

Using HAVING clause to filter out Non Aggregate CUBE rows

QL> SELECT cl erk, product, SUMqty) qty

2 FROM total _sales

3 WHERE clerk IN ('"SCOTT',' FRED)

4 GROUP BY CUBE(cl erk, product)

5 HAVI NG GROUPI NG(cl erk) = 1 OR GROUPI N& product) = 1;

CLERK PRODUCT QTY

FRED 16 €& Sub total row created by ROLLUP or CUBE function
SCOTT 14 & Sub total row created by ROLLUP or CUBE function
APPLE 10 €& Sub total row created only by CUBE function
BANANA 11 €« Sub total row created only by CUBE function
GRAPE 9 & Sub total row created only by CUBE function
30 € Grand total row created by ROLLUP or CUBE function

In all of our examples above, | have used the SUMfunction. Whileit is probably the most common, you can use other
functions such as COUNT, AVG, M N, MAX, etc. And sincethe ORDER BY isthe last operation performed, the subtotal and
grand total rows are sorted among the rest of the rows returned by the query. Be careful to sort these rowsinto alogical
position so that they can be properly interpreted by the user.

www.odtug.com ODTUG 2001

New SQL OLAP Functions... Guion

Analytic Functions

Just beyond ROLLUP and CUBE isanew family of functions commonly referred to as Analytic Functions. These functions
can be broken down into four groups: Ranking Functions, Reporting Functions, Window Functions, Lag/Lead Functions. As
with CUBE and ROLLUP, the new analytic functions also increase devel oper productivity by minimizing the code that needs
to bewritten. They also are optimized and actually perform better than traditional methods, which typically required
convoluted, contained self-joins, and were often difficult to optimize.

RANKING FUNCTIONS
Ranking functions allow usto easily determine how agiven row ranks or compares to other rowsin the set. Functions
included are RANK, DENSE_RANK, CUME_DI ST, PERCENT_RANK, NTI LE, RATI O_TO_REPORT. Each function allows

the data to be ranked based on a single or multiple expressions thereby decreasing the chances of ties.

Now suppose our user wants areport that shows alist of clerks, their sales, and aranking based on their ‘APPLE’ sales. The
syntax looks alittle strange, but it’s easy to understand.

Simple Ranking Functions Example

SQL> SELECT clerk, qty,

RANK() OVER (ORDER BY qty DESC) AS rank,
DENSE_RANK() OVER (ORDER BY qty DESC) AS dense,

RANK() OVER (ORDER BY qty DESC, clerk) AS ur ank

FROM t ot al _sal es

WHERE product = ' APPLE'

ORDER BY qty DESC, clerk;

~NOoO O wWN

TIM 7 1 1 1
FRED 5 2 2 2 <& Notice RANK and DENSE RANK doesn’t split ties,
both FRED and SCOTT are ranked 2™
SCOTT 5 2 2 3 & but using a unique sort clause will force ties
in the @y colum to be split (see urank).
JEFF 3 4 3 4 & Also RANK skips 3" and ranks Jeff at 4'"
but DENSE RANK ranks the next person JEFF at 3rd
ALEX 1 5 4 5

In the above example we see that using a non-unique sort specification of QTY causes both FRED and SCOTT who have sales
of five to be ranked equally with aranking of second. The difference between RANK and DENSE_RANK is that
DENSE_RANK does not skip any ranking positions after atie. Looking at our example we see that J EFF has aranking of
fourth using the RANK function, and no one has aranking of third with the RANK functions since two clerkstied for second.
With DENSE_RANK, JEFF isconsidered third even though two clerkstied for second. If we don’t want any ties, then more
columns or expressions will have to be added to the ORDER BY clause to create a unique sort.

Processing Order
Queries with analytic functions are executed in three primary steps. The first step performs all WHERE, GROUP BY and

HAVI NG clauses and sends the results to the second step where the analytic functions are calculated. Finally inthethird
step, the rows are ordered by the SELECT statements ORDER BY clause. This execution order alows for normal functions

www.odtug.com ODTUG 2001

New SQL OLAP Functions... Guion

such as SUM AVG, COUNT, etc. that are created during the GROUP BY phase to be used in or by the new analytic functions.
In addition since ROLLUP and CUBE generated total rows are calculated during the GROUP BY phase, these rowswill also be
included in any Analytic function processing.

Here we rank clerks, by their total product sales rather than just their ‘ APPLE’ sales, and we get the ratio of their individual
salesto total salesfor the group.

A demonstration of Processing Order and Raito to Report

SQL> SELECT clerk, SUMqty) qty,

RANK() OVER (ORDER BY SUM qty) DESC, clerk) AS rank,
RATI O_TO_REPORT(SUM qty)) OVER () AS ratio
FROM t ot al _sal es

GROUP BY clerk

ORDER BY qty DESC, clerk;

OO WN

CLERK QTY RANK RATI O

TIM 24 1 0.33 «€ 24/ (24 +16 + 14 + 9 + 9)
FRED 16 2 0.22
SCOTT 14 3 0.19
ALEX 9 4 0.13
JEFF 9 5 0.13

Notice now that the RANK function is actually ordered by the Aggregate SUM function that is calculated during the GROUP
BY phase. Also notethe syntax of the RATI O_TO_REPORT function. Thereisno ORDER BY clause and the QTY column
isatypical looking argument.

Partitions

Suppose that we wanted to also provide aranking of saleswithin each clerk. To accomplish thistask we would need to use
the PARTI TI1 ON BY clause. Thefirst thing you will need to realize isthat the PARTI TI ON BY clause of these functionsis
totally unrelated and independent of Oracle 8 stable partition feature, etc. The PARTI TI ON BY clause breaks the data into
numerous datasets based on the list of columns, non-analytic functions, and/or expressions listed. The analytic function is
then cal culated independently on each partition, which means, for example, that the ranking functions reset their values etc.
within each partition.

A single query can have multiple analytic functions, each with adifferent partitioning scheme. If aquery contains an analytic
function with no PARTI TI ON BY clause, the whole query is actually treated as one partition.

The following query ranks the combination of clerks and products by their sales, ranks individual clerks by their sales within
each product, and ranksindividual product sales by each clerk. For those of you who pride themselvesin writing very
complex SQL, | will leave the pure traditional SQL solution (with no Analytic Functions) to you.

www.odtug.com ODTUG 2001

New SQL OLAP Functions... Guion

An example of Partitions

SQL> SELECT product, clerk, qty,

RANK() OVER (ORDER BY gty DESC) AS rank,
RANK() OVER (PARTI TI ON BY product ORDER BY gty DESC) AS prank,
RANK() OVER (PARTI TION BY clerk ORDER BY gty DESC) AS crank

FROM t ot al _sal es
WHERE clerk IN ("TIM," ALEX")
ORDER BY product, clerk;

~NOoO o WN

APPLE ALEX 1 6 2 3
APPLE TIM 7 3 1 3
BANANA ALEX 3 5 2 2
BANANA TIM 8 2 1 2
GRAPE ALEX 5 4 2 1
GRAPE TIM 9 1 1 1

As with ROLLUP and CUBE, the rows may be sorted when calculating the analytic function value, but that does not
guarantee that the final resultswill bein the same order. Always use an ORDER BY clause to sort the rows as you desire.
The PARTI TI ON BY clause of each analytic function call causes the datato be sorted differently. Also remember that the
analytic functions are calculated after the statement’ SGROUP BY is calculated so that the partitioning itself could be based
onaGROUP BY aggregate result such as SUM

Ranking Nulls

Oracle treatsNUL L s as the largest value by default. The new analytic ranking functions, however, give us the choice of
placing NULLs at either the top or the bottom of the rankings by specifyingthe NULLS FI RST or NULLS LAST keywords
of the function’sORDER BY clause. Review the following example, which ranks clerks by their GRAPE sales.

Ordering of NULLs Example

SQL> SELECT clerk, qty,

2 RANK() OVER (ORDER BY qty DESC NULLS FI RST) AS DNF,
3 RANK() OVER (ORDER BY qty NULLS FI RST) AS ANF,
4 RANK() OVER (ORDER BY qty DESC NULLS LAST) AS DNL,
5 RANK() OVER (ORDER BY qty NULLS LAST) AS ANL
6 FROM total _sales

7 WHERE product = ' GRAPE'

8 ORDER BY qty DESC,

CLERK QrY DNF ANF DNL ANL

JEFF 1 1 5 5
TIM 9 2 5 1 4
SCOTT 7 3 4 2 3
ALEX 5 4 3 3 2
FRED 2 5 2 4 1

www.odtug.com ODTUG 2001

New SQL OLAP Functions... Guion

Investigating the DNF (Descending Nulls First) column and the ANF (Ascending Nulls First column, you can see regardless
of whether the function is ordered in descending or ascending order, aNull valueis alwaysrated first. LikewisewithNULLS
LAST, anull value isalways ranked last regardless of the sort order.

Top N Statements

In-Lineviewsis asub query that you place entirely in the FROMclause and that you give an alias. Any column that you listin
the SELECT column list in the sub query, you can usein the parent or encapsulating query. In-line viewsin Oracle previous
to version 8i allowed us to avoid creating unnecessary view schemaobjects. With Oracle 8i, in-line views now allow ordering.

Since you can use an order by clausein anin-lineview it is now possible with Oracle 8i to find the top or bottom few rows of a
table easily and efficiently. These queries arereferred to as Top-N or BottomN queries. Examine the query below, which uses
both an in-line view and a ROANUM predicate to determine the top two clerks for APPLE sales.

Top 2 appleclerksusing a TOP-N query

SQL> SELECT *
2 FROM
3 (SELECT clerk, qty
4 FROM t ot al _sal es
5 WHERE product = ' APPLE'
6 ORDER BY qty DESC) clerk_sales
7
8

WHERE
ROWNUM < 3;
CLERK QTY
TIM 7
SCOTT 5 & Woops. FRED also sold 5 apples,

but ROWNUM predicate throws his row away.

Remember that if the ORDER BY clause was moved from the subquery (in-line view) to the top level query, there would be no
guarantee that the top rows would be returned since Oracle sorts the rows after the row numbers are assigned. The ORDER
BY inthein-line view, however, is executed before the rows are assigned a row number; and therefore, we are guaranteed to
get the largest rows.

This query also executes quicker in Oracle 8i as compared to the traditional method used in prior versions. Thisincreaseis
due to the fact that Oracle recognizes that only two rows are desired so it holds only the two biggest rows fetched so far in
memory rather than sorting the entire table. When abigger row isread, it discards the smaller row and that row is no longer
considered or sorted any further.

However, the TOP-N statement approach above guarantees only two rows will be returned. In our case, FRED also sold five
apples. We can use acombination of in-line views and analytic functions to produce areport that shows the top two clerks
for each product with tiesincluded.

www.odtug.com ODTUG 2001

New SQL OLAP Functions... Guion

Using an Analytic Function in an In-Line View

SQL> SELECT product, srank, clerk, qty
FROM

(SELECT product, clerk, qty,

RANK() OVER (PARTI TI ON BY product
ORDER BY gty DESC NULLS LAST) AS srank

FROM t ot al _sal es

WHERE product IS NOT NULL) clerk_sales
WHERE srank < 3
ORDER BY product, srank;

©CoOo~NOOOODWN

PRODUCT SRANK CLERK Qry

APPLE 1 TIM 7

APPLE 2 SCOTT 5

APPLE 2 FRED 5 <& Nested rank query allows us to include FRED with 5
BANANA 1 FRED 9 appl e sales to be included.

BANANA 2 TIM 8

GRAPE 1 TIM 9

GRAPE 2 SCOTT 7

Reporting Aggregate Functions

Whereas the Ranking functionsintroduced totally new functions such asRANK and RATI O_TO_REPORT that could be
calculated for aquery or partition, existing Aggregate functions such as SUMand AVG have been enhanced and can now be
calculated over aquery or partition. Before, these functions caused only one row per group to be returned, now with the use
of the OVER clause, these functions can be used to place these values as columns and as part of each row in the query.

Aswith the Ranking Functions, each Reporting Aggregate Functions can be partitioned differently; and therefore, the
Reporting Aggregate Function would also be reset at each partition border.

Simple Aggr egate Function Example

SQL> SELECT product, clerk, qty,

SUM qty) OVER () AS sum

SUM qty) OVER (PARTI TI ON BY product) AS psum
FROM t ot al _sal es

WHERE clerk IN (' SCOTT',' FRED')

ORDER BY product, clerk;

O WN

PRODUCT CLERK QrY SUM PSUM

APPLE FRED 5 30 10 ¢« PSUME10=5+5 and SUM=30=5+5+9+2+2+7
APPLE SCOTT 5 30 10 “r
BANANA FRED 9 30 11 < PSUMF11=9+2 “n
BANANA SCOTT 2 30 11 .
GRAPE FRED 2 30 9 & PSUM=9=2+7 .
GRAPE SCOTT 7 30 9 “r

Reviewing the above query, we see that a column SUMcontains the total of all the products and clerks sales. By definition
this column would have the same value for all columns of the query. The PSUM(Product Sum) column shows the total sales
for that product.

www.odtug.com ODTUG 2001

New SQL OLAP Functions... Guion

With the use of In-Line views, comparisons can also be made between an aggregate value and the individual detail row
values. For example, comparisons can be made between the average sales and an individual clerk’s sales. The following
query returnsall clerks who sold above the average.

Comparing Reporting Aggregate valuesto detail values example

SQL> SELECT clerk, qty, clerk_avg
FROM (SELECT clerk, SUMgty) qty,
AVG(SUM qty)) OVER () AS clerk_avg
FROM t ot al _sal es
GROUP BY clerk) clerk_sales
VWHERE qty > clerk_avg
ORDER BY qty DESC;

~NOoO o WN

CLERK QrY CLERK_AVG

Window Aggregate Functions

Windows are used to cal culate cumul ative and moving average values for each row. If you specify an ORDER BY inyour
Analytic Function, your Reporting Aggregate Function becomes a Window Aggregate Function. Specifically windows can
be used to limit the rowsin the query (or partition) that are used in calculating the analytic function. Infact all analytic
functions operate in awindow. If oneisnot defined, the whole partition or query is considered the window.

Simply specifying a starting point and/or ending point defines awindow, and these points may move or befixed. A window
can be as large as the whole partition (or query) or as small asaonerow. Windows are either Physical or Logical, and Logical
windows are either based on a Time Interval or aValue Range.

Physical windows are identified by the ROWS keyword and logical by the RANGE keyword. The span of rowsincluded in the
window is defined using the PRECEDI NG, the FOLLOW NG, or the BETWEEN start AND end phrase. To specify awindow
that always starts with the first row use the UNBOUNDED withthe PRECEDI NGkeyword asthe start. Like wise use
UNBOUNDED FOLLOW NGto specify awindow that always ends with the last row in the partition (or query). Finally,
CURRENT ROWCcan be used to specify that the window begins or ends at the current row.

A sliding window would be used to calculate items such as amoving average, whereas a running total would be calculated by
defining awindow with afixed start point of thefirst row (UNBOUNDED PRECEDI NG) and the last row being the current row
(CURRENT ROW,.

Running Total

Simply simply specifying a unique ORDER BY clausein anormal Reporting Aggregate Function easily creates arunning total.
It will assume the default window definition, which isalogical window with the starting point of thefirst row and an ending
point of thelast row (i.e. RANGE BETVEEN UNBOUNDED PRECEDI NG AND CURRENT ROW,.

www.odtug.com ODTUG 2001

New SQL OLAP Functions... Guion

Simple Window example to calculate a Running Total

SQL> SELECT TO CHAR(sdate,' Dy, Mon DD) s_date, qty,

2 SUMqty) OVER () AS sum
3 SUMqty) OVER (ORDER BY sdate) AS rsum <& Just added an order by clause
4 FROM cl erk_daily_sales
5 WHERE clerk = 'FRED
6 ORDER BY sdate;

S_DATE QTY SUM RSUM

Thu, Jan 11 2 30 2 € RSUM = 2

Fri, Jan 12 1 30 3 €RSUM=2 + 1

Tue, Jan 16 6 30 9 ¢« RSUM=2 + 1 + 6

Wed, Jan 17 5 30 14

Thu, Jan 18 4 30 18

Fri, Jan 19 3 30 21

Mon, Jan 22 9 30 30

Theresults are kind of surprising without any definition of the starting point or ending point of the window. In the above
example, by simply adding an ORDER BY clause to the Aggregate Function, we have created a Window and therefore a
running total.

Physical Windows

Physical windowsare defined by using the ROAS keyword and by specifying the actual (“physical”) number of rows (called
the “offset”) before and after the current row that should be included in the window. The offset must evaluate to a positive
integer. Physical windowscan be ordered based on multiple columns or expressions. For physical windows, the ORDER BY
expression should result in a unique ordering so that the result given is“ deterministic” (or repeatable).

Let’ s say that we want a query that shows us a moving sum of the last four weekdays regardless of whether there were sales
or not.

www.odtug.com ODTUG 2001

New SQL OLAP Functions... Guion

Physical Window Example— Running Total of Last Four Days of Sales

SQL> SELECT TO CHAR(sdate,' Dy, Mon DD) s_date, qty,
2 sSuMqty) OVER (ORDER BY sdate
3 ROWS 3 PRECEDI NG) AS sal edy
4 FROM cl erk_daily_sales
5 WHERE clerk IN ('FRED)
6 ORDER BY sdate;
S_DATE QrY SALEDY
Thu, Jan 11 2 2 & SALEDY = Current (2)
Fri, Jan 12 1 3 & SALEDY = Current (1) + Row- 1(2)
Tue, Jan 16 6 9 & SALEDY = Current (6) + Row 1(1) + Row 2(2)
Wed Tue Fri Thu
Wed, Jan 17 5 14 & SALEDY = Current (5) + Row1(6) + Row-2(1) + Row-3 (2)
Whoops! We wanted Wed to include Tue, Mon and Fri, NOT
the previous Thu (2) sales.
Thu, Jan 18 4 16
Fri, Jan 19 3 18
Mon, Jan 22 9 21

In the above example we see that no sales datais recorded for weekends; however, there were no sales for the government
holiday MLK day (15-Jan-01). What we get with the above physical window isthe |ast four days with sales recorded, not the
last four weekdays. By their very nature, physical windows may not be well suited for sparse data (with gapsin dates etc.).

Time Interval Windows

Logical windows are defined by using the RANGE keyword and can only be ordered based on a single column or expression if
either the PRECEDI NGor FOLLOW NGkeywords are used. For Logical Time Interval windows, thel NTERVAL keyword is
also used and the order by expression or column must evaluate to a date.

A Time Interval window includes all rows for the current rows day, month, or year aswell asall rowswhoseinterval value
(sort expression) falls between the offset specified in the ROANS PRECEEDI NG and ROAS FOLLOW NGclause. For
example, if atimeinterval window was defined asRANGE | NTERVAL ‘27 MONTHS PRECEEDI NGthen each row in the
partition with the current month or the two preceding months would be included in the calculation of the function. DAY,
MONTH, and YEAR are valid interval keywords.

Again, let’stry to write aquery that shows us a moving sum of the last four weekdays regardless of whether there were sales
or not.

www.odtug.com ODTUG 2001

New SQL OLAP Functions... Guion

Logical Time Interval Window Example— Running Total of Last Four Calendar Days

SQL> SELECT TO CHAR(sdate,' Dy, Mon DD) s_date, qty,
2 ..
5 SUMqty) OVER (PARTI TION BY clerk
6 ORDER BY sdat e
7 RANGE | NTERVAL ‘3’ DAY PRECEDI NG) AS cal dy
8 FROM cl erk_daily_sales
9 WHERE clerk IN ('FRED)
10 ORDER BY sdate;
S DATE QTY SALEDY CALDY
Thu, Jan 11 2 2 2 & CALDY = Thu (2)
Fri, Jan 12 1 3 3 & CALDY = Fri (1) + Thu (2)
Tue, Jan 16 6 9 6 <& CALDY = Tue (6) + Mon () + Sun () + Sat ()
Ved, Jan 17 5 14 11 € CALDY = Ved (6) + Tue (5) + Mon () + Sun ()
Whoops! Now we successfully avoid Thu sal es
but now we are m ssing Fri sales.
Thu, Jan 18 4 16 15
Fri, Jan 19 3 18 18
Mon, Jan 22 9 21 12

Unfortunately the above query gets usthe last four calendar days, but failsto recognize weekend. In addition, the above
PARTI TI ON BY clause was not needed, but added just to remind you of the possibilities that exist.

To conqguer this request, we will need to base the actual window size for each row to account for weekends. If the current row
isaMonday, Tuesday, or Wednesday the offset should be 5 daysto allow for skipping over Saturday and Sunday. Thursday
and Friday rows should still have an offset of 3 days. Below isa correct solution to the problem.

www.odtug.com ODTUG 2001

New SQL OLAP Functions... Guion

Varying Window Size Example— Running Total of Last Four Weekdays

SQL> SELECT TO CHAR(sdate,' Dy, Mon DD) s_date, qty,

2 ..
8 SUMqty) OVER (

9 ORDER BY sdate RANGE

10 (CASE WHEN (TO_CHAR(sdate,'DY') IN (‘THU ,’ FRI')) THEN 3 ELSE 5 END)
11 PRECEDI NG) AS weekdy

12 FROM cl erk_daily_sales
13 WHERE clerk IN (' FRED)
14 ORDER BY sdate;

S _DATE QTY SALEDY CALDY WEEKDY

Thu, Jan 11 2 2 2 2 & WEEKDY = Thu(2)

Fri, Jan 12 1 3 3 3 & WEEKDY = Fri(1)+Thu(2)

Tue, Jan 16 6 9 6 9 <& WEEKDY = Tue(6)+Mon()+Sun()+ Sat()+Fri (1) +Thu(2)
Tue Includes Mon, Fri and Thu sal es!

Wed, Jan 17 5 14 11 12 & WEEKDY = Wed(5) +Tue(6)+Mon() +Sun() +Sat () +Fri (1)
Wed | ncludes Tue, Mon and Fri sal es!

Thu, Jan 18 4 16 15 15 & WEEKDY = Thu(4) +Wed(5) +Tue(6) +Mon()

Fri, Jan 19 3 18 18 18 €& WEEKDY = Fri (3)+Thu(4)+Wed(5) +Tue(6)

Mon, Jan 22 9 21 12 21

In the above example, | used the new CASE function instead of using a DECODE or user defined function. Both of those
would also work aswell. The CASE function is new to Oracle 8i and allows all comparison operatorsto be used plusthe
ability to use ANDs, ORs, etc. in asingletest. In addition, since simple date arithmetic is donein days, a Time Interval window
with an| NTERVAL of DAYS is the same as value range window. The above exampleisreally avalue range window based on
days.

Value Range Windows
Logical Vaue Range windows can only be ordered based on a single column or expression if the PRECEDI NG or
FOLLOW NGclause isused and must evaluate to a positive integer.

A Value Range window contains all rows that have the same value as the order by expression of the current row plus all rows
whose value falls between the offset specified in the valuesPRECEDI NG and valuesFOLLOW NGclause. For example, if the
current rows order by expression evaluatesto 20 and the window is defined as‘ RANGE BETWEEN 5 PRECEDI NG AND 5
FOLLOW NG, then it would include all rows whose order by expression evaluates between 15 and 25.

The query below finds for each clerk, the average sales for al clerks that are within five yearsof his/her age.

Value Range Example

www.odtug.com ODTUG 2001

New SQL OLAP Functions... Guion

SQL> SELECT s.clerk, age, SUMqty) qty,
AVG(SUM qty)) OVER (ORDER BY age
RANGE BETWEEN 5 PRECEDI NG AND 5 FOLLOW NG) AS avg
FROM cl erk_daily_sales s, clerks ¢
WHERE s.clerk = c.clerk
GROUP BY s.clerk, age
ORDER BY c. age;

~NOoO o wWN

CLERK AGE QTY AVG

JEFF 30 32 34.00 € AVG =34 = (32 +36) / 2
ALEX 33 36 36.00 € AVG = 36 = (32 + 36 + 40) / 3
TIM 36 40 37.00 € AVG = 37 = (36 + 40 + 35) / 3
SCOTT 39 35 35.00 € AVG = 35 = (40 + 35 + 30) / 3
FRED 42 30 32.50 € AVG =32 = (35 + 30) / 2

Remember that the default window (created when just an ORDER BY clauseis used) is defined as alogical window with the
definition of RANGE BETWEEN UNBOUNDED PRECEDI NG AND CURRENT ROW Inthe example below we see that
RSUM which just uses an ORDER BY, clause isthe same asRASUMwhich is defined using the default keywords. Itis
important to remember that with alogical window, all rows with the current order by value areincluded. Looking at the first
two rows, both have the order by value of January 11" and therefore both rows will have the same running total of six.

By simply making the ordering unique (i.e. adding CLERK to the ORDER BY clause), the column RSUMJ |ooks more like our
typical running total. Itisstill alogical window, but since the ordering is unique, no two rows will have the same order by
value(s). ROSUMshows that we can still get the typical running total by specifying a physical window (using the ROAS
keyword), but the resultswill not be deterministic (or repeatable).

Example of Non Unique sortswith Logical and Physical Windows

SQL> SELECT TO CHAR(sdate,'Dy, Mon DD') s_date, clerk, qty,

2 SUMqty) OVER (ORDER BY sdat e) AS rsum

3 SuMqty) OVER (ORDER BY sdat e RANGE

4 BETWEEN UNBOUNDED PRECEDI NG AND CURRENT ROW AS rasum

5 SUMqty) OVER (ORDER BY sdat e, cl erk) AS rsumu,

6 SUMqty) OVER (ORDER BY sdat e ROWS UNBOUNDED PRECEDI NG) AS rosum

7 FROM clerk_daily_sales
8 WHERE clerk IN ('SCOTT',' FRED)
9 ORDER BY sdate, clerk;

S_DATE CLERK Qry RSUM = RASUM RSUMU = ROSUM
Thu, Jan 11 FRED 2 6 = 6 2 = 2
Thu, Jan 11 SCOTT 4 6 = 6 6 = 6
Fri, Jan 12 FRED 1 10 = 10 7 = 7
Fri, Jan 12 SCOTT 3 10 = 10 10 = 10
Tue, Jan 16 FRED 6 24 = 24 16 = 16
Tue, Jan 16 SCOTT 8 24 = 24 24 = 24

www.odtug.com ODTUG 2001

New SQL OLAP Functions... Guion

Lag/Lead Functions

Lag/Lead Functions allows access to valuesin preceding or following rows and provide for inter row calculations such as
period-to-period changes without expensive self-join operations. Example queriesthat could be written include “Growth in
earnings from same quarter last year”. Accessto adifferent row’s values are simply made by specifying the offset from the
current row, and adefault value can also be used to specify for rows where the offset goes beyond the beginning or end of
the query.

The example below shows a basic use of the LAG and LEAD functions to access a preceding or following row.

Simple Lag/L ead Example

SQL> SELECT TO CHAR(sdate,' Dy, Mon DD') s_date, qty,
2 LAG(qty,1,0) OVER (ORDER BY sdate) AS | ast _day,
3 LEAD(qty,1,0) OVER (ORDER BY sdate) AS next _day
4 FROM cl erk_daily_sales
5 WHERE clerk IN ('FRED)
6 ORDER BY sdate;

S_DATE qQry LAST_DAY NEXT_DAY
Thu, Jan 11 2 0 1 & LAST_DAY = 0 since the Lag function
specified a zero as the default.
Fri, Jan 12 1 2 6
Tue, Jan 16 6 1 5
Wed, Jan 17 5 6 4
Thu, Jan 18 4 5 3
Fri, Jan 19 3 4 9
Mon, Jan 22 9 3 0 € NEXT_DAY = 0 since the Lead function

specified a zero as the default

In order to calculate period-to-period changes with lag / lead functions, the data would have to be dense or with no gaps
thereby the physical offsets would correspond to logical offsets such as periods of time. For example, if the query isto
calculate growth in sales from Q1 in one year to the next, then each quarter must have data so that the preceding fourth row is
alwaysfor the same quarter. Inthe query below the sales growth from two days ago is cal culated.

Period-to-Period Example- Growth in Sales from Two Days Ago

www.odtug.com ODTUG 2001

New SQL OLAP Functions... Guion

SQL> SELECT TO CHAR(sdate,' Dy, Mon DD) s_date, qty,
2 (qty - LAG(qty,2) OVER (ORDER BY sdate)) /
3 (LAG(qty, 2) OVER (ORDER BY sdate)) * 100 growth
4 FROM cl erk_daily_sales
5 WHERE clerk IN (' FRED)
6 ORDER BY sdate;

S DATE Qry GROWIH

Thu, Jan 11

Fri, Jan 12

Tue, Jan 16 200.00 <« GROWIH = (6 — 2) / 2
=(5-1) /1

-33.33
-40. 00

2
1
6
Wed, Jan 17 5 400. 00 < GROWIH
4 Lo
3
9 125. 00

First and Last Functions
These two functionsFI RST_VALUE and LAST_VALUE are really just two more Window Aggregate Functions. They return
thefirst valuein awindow and the last value in awindow.

Don't forget that unlessUNBOUNDED FOLLOW NGis specified, the LAST_ VAL UE function will return the value of the
current row since it operates over the window and by default awindow ends with the current row as shown by the RLQTY
column in the example below. FI RST_VALUE will be as expected, since by default awindow is defined to start on the first
row of the partition (or query, i.e. UNBOUNDED PRECEEDI NG).

First and Last Value Example

SQL> SELECT TO CHAR(sdate,' Dy, Mon DD') s_date, qty,

2 FI RST_VALUE(qty) OVER (ORDER BY sdate) AS fqty,

3 LAST_VALUE(qty) OVER (ORDER BY sdate) AS rlqty,

4 LAST_VALUE(gty) OVER (ORDER BY sdate

5 ROWS BETWEEN UNBOUNDED PRECEDI NG

6 AND UNBOUNDED FOLLOW NG) AS I gty

7 FROM clerk_daily_sales

8 WHERE clerk = 'FRED ;
S_DATE QrY FQTY RLQTY LQTY
Thu, Jan 11 2 2 2 € Wndow 1/11..1/11 9 & Wndow 1/11..1/22
Fri, Jan 12 1 2 1 € Wndow 1/11..1/12 9
Tue, Jan 16 6 2 6 € Wndow 1/11..1/13 9
Wed, Jan 17 5 2 5 &€ Wndow 1/11..1/14 9
Thu, Jan 18 4 2 4 & Wndow 1/11..1/15 9
Fri, Jan 19 3 2 3 & Wndow 1/11..1/16 9
Mon, Jan 22 9 2 9 ¢« Wndow 1/11..1/17 9

Conclusion

www.odtug.com ODTUG 2001

New SQL OLAP Functions... Guion

If you made it to the end of this paper, | hope you have a good overview of some of the new OLAP functions provided for by
Oracle 8i. With these new functions all kinds of complex queries could be formulated. In the example below the query ranks
and returns by sales only the clerks who sold less than the average of the clerks who are within five years of his age.

SQL> SELECT clerk, qty,
RANK() OVER (ORDER BY qty DESC) rank
FROM (SELECT s.clerk, SUMqty) qty,
AVG(SUM gqty)) OVER (ORDER BY age
RANGE BETWEEN 5 PRECEDI NG AND 5 FOLLOW NG) AS avg
FROM clerk_daily_sales s, clerks c
WHERE s.clerk = c.clerk
GROUP BY s.clerk, age) clerk_avg
WHERE qty < avg
ORDER BY rank;

O OWoWO~NOUWN

[N

CLERK QTY RANK

In addition, Oracle has also added some statistical functionsincluding linear regression, covariance, and correlation
computations. Please refer to the Oracle documentation for compl ete details.

www.odtug.com ODTUG 2001

