Models and Issues in Data
Stream Systems
(with changes by CZ)

Rajeev Motwani

Stanford University

(with Brian Babcock, Shivnath Babu,
Mayur Datar, and Jennifer Widom)

PODS 2002

Data Streams

e Traditional DBMS — data stored in finite,
persistent data sets

* New Applications — data input as continuous,
ordered data streams

— Network monitoring and traffic engineering
— Telecom call records

— Network security

— Financial applications

— Sensor networks

— Manufacturing processes

— Web logs and clickstreams

— Massive data sets

Data Stream Management System

User/Application

| t
Register Query l i Results
S Stream Query Data
Processor Stream
Management
System
(DSMS)

Scratch Space
(Memory and/or Disk)

Sample Applications

* Network security
(e.g., iPolicy, NetForensics/Cisco, Niksun)

— Network packet streams, user session information

— Queries: URL filtering, detecting intrusions & DOS
attacks & viruses

» Financial applications
(e.g., Traderbot)

— Streams of trading data, stock tickers, news feeds
— Queries: arbitrage opportunities, analytics, patterns
— SEC requirement on closing trades

Executive Summary

» Data Stream Management Systems (DSMS)
— Highlight issues and motivate research

— Not a tutorial or comprehensive survey

e Caveats

— Personal view of emerging field
& Stanford STREAM Project bias
& Cannot cover all projects in detalil

DBMS versus DSMS

* Persistent relations * Transient streams

* One-time queries .

« Random access .

e “Unbounded” disk store

* Only current state
matters

* No real-time services .

» Assume precise data

Continuous queries
Sequential access
Bounded main memory

History/arrival-order is
critical

Real-time requirements

Data stale/imprecise

Making Things Concrete
3’ ALICE :E,‘- BOB
))

- %

4 Y Y <
»| Central Central |
» Office Office

Outgoing (call_ID, callgr, time, event) v i
Incoming (cgl ID, callee, time, event)

DSMS

event = startor end

Query 1 (self-join)

Find all outgoing calls longer than 2 minutes

SELECT Ol.call_ID, Ol.caller

FROM Outgoing O1, Outgoing O2

WHERE (O2.time — Ol.time > 2
AND Ol.call_ID =02.call_ID
AND Ol.event = start
AND O2.event = end)

Result requires unbounded storage

Can provide result as data stream

Can output after 2 min, without seeing end

Query 2 (Join)
Pair up callers and callees

SELECT O.caller, l.callee
FROM Outgoing O, Incoming |
WHERE O.call_ID =I.call_ID

Can still provide result as data stream

Requires unbounded temporary storage ...

... unless streams are near-synchronized

Query 3 (group-by aggregation)

e Total connection time for each caller

SELECT Ol.caller, sum(O2.time — O1.time)
FROM Outgoing O1, Outgoing O2
WHERE (Ol.call_ID = 0Q2.call_ID

AND Ol.event = start

AND O2.event = end)
GROUP BY Ol.caller

» Join: a very inefficient solution (C2)

* sum: some window must be specified

Outline of Remaining Talk

Stream Models and DSMS Architectures
Query Processing

Runtime and Systems Issues
Algorithms

Conclusion

Data Model
Append-only
— Call records

Updates
— Stock tickers

Deletes
— Transactional data

Meta-Data
— Control signals, punctuations

System Internals — probably need all above

Related Database Technology

* DSMS must use ideas, but none is substitute
— Triggers, Materialized Views in Conventional DBMS
— Main-Memory Databases
— Distributed Databases
— Pub/Sub Systems
— Active Databases
— Sequence/Temporal/Timeseries Databases
— Realtime Databases
— Adaptive, Online, Partial Results

* Novelty in DSMS
— Semantics: input ordering, streaming output, ...
— State: cannot store unending streams, yet need history
— Performance: rate, variability, imprecision, ...

Stream Projects

* Amazon/Cougar (Cornell) — sensors

e Aurora (Brown/MIT) — sensor monitoring, dataflow

» Hancock (AT&T) — telecom streams

* Niagara (OGIl/Wisconsin) — Internet XML databases

» OpenCQ (Georgia) — triggers, incr. view maintenance
» Stream (Stanford) — general-purpose DSMS

» Tapestry (Xerox) — pub/sub content-based filtering

» Telegraph (Berkeley) — adaptive engine for sensors

» Tribeca (Bellcore) — network monitoring

e ATLAS(UCLA) — Query power: DB/DS integration.

Aurora/STREAM Overview

Output streams

/| =10000=
&

SileEss- Query Plans
Running Op %
Ready Op ft

Applications register

® \Waiting Op Gﬁ@ﬁg D@. continuous queries
on ' h?
‘CZQD @CZ:)DCZ:}@\ sers issue

continuous and

1 1
% § % ad-hoc queries
v 1 1 7 \ r

S — = — —
Historical — — == =
= = = = Administrator monitors

1]]] query execution and adjusts

run-time parameters

Input streams

Adaptivity (Telegraph)

Output
5 Quetes |

STeMs for join

grouped
filter (R.A)
grouped
filter (S.B)
o QU S 1
Input Streams% % %
Tt t 1
RS T

* Runtime Adaptivity
» Multi-query Optimization

* Framework — implements arbitrary schemes

Query-Split Scheme (Niagara)

IBM | filei

MSFET| file

Quotes. XML \/alue
constant
=il Ga» <G>

» Aggregate subscription for efficiency

» Split — evaluate trigger only when file updated

* Triggers — multi-query optimization

Outline of Remaining Talk

Stream Models and DSMS Architectures

Query Processing

Runtime and Systems Issues

Algorithms

Conclusion

Blocking Operators

Blocking
— No output until entire input seen

— Streams — input never ends

Aggregates — output “update” stream

Set Output (sort, group-by)
— Intermediate nodes — try non-blocking analogs

— Example — juggle for sort [Raman,R,Hellerstein]

— Punctuations and constraints

* Join
— sliding-window restrictions

Punctuations [Tucker, Maier, Sheard, Fegaras]
Assertion about future stream contents

» Unblocks operators, reduces state
group-by
_R.A<10 _ @

State/Index—» «—>
R.A=10

P: S.A=10

=[lill=x
=[llll=v

» Future Work
— Inserted at source or internal (operator signaling)?

— Does P unblock Q? Exists P? Rewrite Q?
— Relation between P and memory for Q?

10

Impact of Limited Memory

Continuous streams grow unboundedly
Queries may require unbounded memory

[ABBMW 02]

— a priori memory bounds for query

— Conjunctive gueries with arithmetic comparisons
— Queries with join need domain restrictions

— Impact of duplication elimination

Open — general queries

Approximate Query Evaluation

Why?
— Handling load — streams coming too fast
— Avoid unbounded storage and computation
— Ad hoc queries need approximate history

How? Sliding windows, synopsis, samples, load-shed

Major Issues?

— Metric for set-valued queries

Composition of approximate operators

How is it understood/controlled by user?

Integrate into query language

Query planning and interaction with resource allocation
Accuracy-efficiency-storage tradeoff and global metric

11

Sliding Window Approximation

1
011000011140|0 OOlOlOll

Why?
— Approximation technique for bounded memory
— Natural in applications (emphasizes recent data)
— Well-specified and deterministic semantics

Issues

— Extend relational algebra, SQL, query optimization
— Algorithmic work

— Timestamps?

Timestamps

Explicit
— Injected by data source
— Models real-world event represented by tuple
— Tuples may be out-of-order, but if near-ordered can reorder
with small buffers

Implicit

— Introduced as special field by DSMS

— Arrival time in system

— Enables order-based querying and sliding windows

Issues
— Distributed streams?
— Composite tuples created by DSMS?

12

Timestamps in JOIN Output

R =lil=
=[illl= T
s =lilll=

Approach 1
User-specified, with defaults
Compute output timestamp

Must output in order of
timestamps

Better for Explicit Timestamp
Need more buffering

Get precise semantics and
user-understanding

Approach 2

Best-effort, no guarantee
Output timestamp is exit-time

Tuples arriving earlier more
likely to exit earlier

Better for Implicit Timestamp
Maximum flexibility to system

Difficult to impose precise
semantics

Approximate via Load-Shedding

Handles scan and processing rate mismatch

Input Load-Shedding

Sample incoming tuples

Use when scan rate is
bottleneck

Positive — online aggregation
[Hellerstein, Haas, Wang]

Negative — join sampling
[Chaudhuri, Motwani, Narasaya]

Output Load-Shedding

Buffer input infrequent output

Use when query processing
is bottleneck

Example — XJoin
[Urhan, Franklin]

Exploit synopses

13

Stream Query Language?

SQL extension

Sliding windows as first-class construct
— Awkward in SQL, needs reference to timestamps
— SQL-99 allows aggregations over sliding windows

Sampling/approximation/load-shedding/QoS
support?

Stream relational algebra and rewrite rules
— Aurora and STREAM
— Sequence/Temporal Databases

Outline of Remaining Talk

Stream Models and DSMS Architectures
Query Processing

Runtime and Systems Issues
Algorithms

Conclusion

14

DSMS Internals

» Query plans: operators, synopses, queues

* Memory management
— Dynamic Allocation — queries, operators, queues, Ssynopses
— Graceful adaptation to reallocation
— Impact on throughput and precision

» Operator scheduling

Variable-rate streams, varying operator/query requirements
Response time and QoS

Load-shedding

Interaction with queue/memory management

Queue Memory and Scheduling
[Babcock, Babu, Datar, Motwani]

Goal

— Given — query plan and selectivity estimates
— Schedule — tuples through operator chains

Minimize total queue memory
— Best-slope scheduling is near-optimal
— Danger of starvation for some tuples

Minimize tuple response time
— Schedule tuple completely through operator chain
— Danger of exceeding memory bound

Open — graceful combination and adaptivity

15

Queue Memory and Scheduling
[Babcock, Babu, Datar, Motwani]

Output

selectivity = 0.0 @

selectivity = 0.6

fni=

selectivity = 0.2

mﬂ.ﬂ..b@p...m@pma

Input

S1

S2

Net Selectivity

best slope

starvation point

S3

Time

Rate-Based & QoS Optimization

* [Viglas, Naughton]
— Optimizer goal is to increase throughput
— Model for output-rates as function of input-rates
— Designing optimizers?

* Aurora — QoS approach to load-shedding

3 3

o

o f o
]

ey

QoS

2ot

% tuples delivered

Delay

Static: drop-based Runtime: delay-based

Ouput-value

Semantic: value-based

16

Outline of Remaining Talk
Stream Models and DSMS Architectures
Query Processing
Runtime and Systems Issues
Algorithms

Conclusion

Synopses
Queries may access or aggregate past data

Need bounded-memory history-approximation

Synopsis?
— Succinct summary of old stream tuples
— Like indexes/materialized-views, but base data is unavailable

Examples

Sliding Windows
Samples

Sketches

Histograms

Wavelet representation

17

Model of Computation

/&EI:I:

Synopses/Data Structures

Memory: poly(1/e, log N)

Data Stream Query/Update Time: poly(1/e, log N)

N: # tuples so far, or window size

€ error parameter

Many other results ...

» Histograms
— V-Opt Histograms
[Gilbert, Guha, Indyk, Kotidis, Muthukrishnan, Strauss], [Indyk]
— End-Biased Histograms (Iceberg Queries)
[Manku, Motwani], [Fang, Shiva, Garcia-Molina, Motwani, Ullman]
— Equi-Width Histograms (Quantiles)
[Manku, Rajagopalan, Lindsay], [Khanna, Greenwald]
— Wavelets
Seminal work [Vitter, Wang, lyer] + many others!

e Data Mining

— Stream Clustering

[Guha, Mishra, Motwani, O’Callaghan]
[O’Callaghan, Meyerson, Mishra, Guha, Motwani]

— Decision Trees
[Domingos, Hulten], [Domingos, Hulten, Spencer]

18

Conclusion: Future Work

* Query Processing
— Stream Algebra and Query Languages
— Approximations
— Blocking, Constraints, Punctuations

Runtime Management

— Scheduling, Memory Management, Rate Management
— Query Optimization (Adaptive, Multi-Query, Ad-hoc)

— Distributed processing

» Synopses and Algorithmic Problems

Systems
— UlI, statistics, crash recovery and transaction management
— System development and deployment

Thank You!

PODS 2002

19

