Models and Issues in Data Stream Systems
(with changes by CZ)

Rajeev Motwani

Stanford University
(with Brian Babcock, Shivnath Babu, Mayur Datar, and Jennifer Widom)

Data Streams

- **Traditional DBMS** – data stored in finite, persistent data sets
- **New Applications** – data input as continuous, ordered data streams
 - Network monitoring and traffic engineering
 - Telecom call records
 - Network security
 - Financial applications
 - Sensor networks
 - Manufacturing processes
 - Web logs and clickstreams
 - Massive data sets
Sample Applications

- **Network security**
 (e.g., iPolic, NetForensics/Cisco, Niksun)
 - Network packet streams, user session information
 - **Queries:** URL filtering, detecting intrusions & DOS attacks & viruses

- **Financial applications**
 (e.g., Traderbot)
 - Streams of trading data, stock tickers, news feeds
 - **Queries:** arbitrage opportunities, analytics, patterns
 - SEC requirement on closing trades
Executive Summary

- **Data Stream Management Systems (DSMS)**
 - Highlight issues and motivate research
 - Not a tutorial or comprehensive survey

- **Caveats**
 - Personal view of emerging field
 - Stanford STREAM Project bias
 - Cannot cover all projects in detail

DBMS versus DSMS

- Persistent relations
- One-time queries
- Random access
- “Unbounded” disk store
- Only current state matters
- No real-time services
- Assume precise data

- Transient streams
- Continuous queries
- Sequential access
- Bounded main memory
- History/arrival-order is critical
- Real-time requirements
- Data stale/imprecise
Making Things Concrete

ALICE

BOB

Central Office

DSMS

Central Office

Outgoing (call_ID, caller, time, event)

Incoming (call_ID, callee, time, event)

event = start or end

Query 1 (self-join)

• Find all outgoing calls longer than 2 minutes

SELECT O1.call_ID, O1.caller
FROM Outgoing O1, Outgoing O2
WHERE (O2.time – O1.time > 2
AND O1.call_ID = O2.call_ID
AND O1.event = start
AND O2.event = end)

• Result requires unbounded storage
• Can provide result as data stream
• Can output after 2 min, without seeing end
Query 2 (join)

- **Pair up callers and callees**

  ```sql
  SELECT O.caller, I.callee 
  FROM Outgoing O, Incoming I 
  WHERE O.call_ID = I.call_ID 
  ```

- Can still provide **result as data stream**
- Requires **unbounded temporary storage** …
- … unless streams are **near-synchronized**

Query 3 (group-by aggregation)

- **Total connection time** for each caller

  ```sql
  SELECT O1.caller, sum(O2.time - O1.time) 
  FROM Outgoing O1, Outgoing O2 
  WHERE (O1.call_ID = O2.call_ID 
  AND O1.event = start
  AND O2.event = end) 
  GROUP BY O1.caller 
  ```

- Join: a very inefficient solution (CZ)
- sum: some window must be specified
Outline of Remaining Talk

- Stream Models and DSMS Architectures
- Query Processing
- Runtime and Systems Issues
- Algorithms
- Conclusion

Data Model

- Append-only
 - Call records
- Updates
 - Stock tickers
- Deletes
 - Transactional data
- Meta-Data
 - Control signals, punctuations

System Internals – probably need all above
Related Database Technology

- **DSMS must use ideas, but none is substitute**
 - Triggers, Materialized Views in Conventional DBMS
 - Main-Memory Databases
 - Distributed Databases
 - Pub/Sub Systems
 - Active Databases
 - Sequence/Temporal/Timeseries Databases
 - Realtime Databases
 - Adaptive, Online, Partial Results

- **Novelty in DSMS**
 - Semantics: input ordering, streaming output, …
 - State: cannot store unending streams, yet need history
 - Performance: rate, variability, imprecision, …

Stream Projects

- Amazon/Cougar (Cornell) – sensors
- **Aurora** (Brown/MIT) – sensor monitoring, dataflow
- Hancock (AT&T) – telecom streams
- Niagara (OGI/Wisconsin) – Internet XML databases
- OpenCQ (Georgia) – triggers, incr. view maintenance
- Stream (Stanford) – general-purpose DSMS
- Tapestry (Xerox) – pub/sub content-based filtering
- **Telegraph** (Berkeley) – adaptive engine for sensors
- Tribeca (Bellcore) – network monitoring
- **ATLAS** (UCLA) – Query power: DB/DS integration.
Aurora/STREAM Overview

- Users issue continuous and ad-hoc queries
- Administrator monitors query execution and adjusts run-time parameters
- Applications register continuous queries

Adaptivity (Telegraph)

- Runtime Adaptivity
- Multi-query Optimization
- Framework – implements arbitrary schemes
Query-Split Scheme (Niagara)

- Aggregate subscription for efficiency
- Split – evaluate trigger only when file updated
- Triggers – multi-query optimization

Outline of Remaining Talk

- Stream Models and DSMS Architectures
- Query Processing
 - Runtime and Systems Issues
 - Algorithms
- Conclusion
Blocking Operators

- **Blocking**
 - No output until entire input seen
 - Streams – input never ends
- **Aggregates** – output “update” stream
- **Set Output** (sort, group-by)
 - Intermediate nodes – try non-blocking analogs
 - Example – j u g g l e for sort [Raman,R,Hellerstein]
 - Punctuations and constraints
- **Join**
 - Sliding-window restrictions

Punctuations [Tucker, Maier, Sheard, Fegaras]

- Assertion about future stream contents
- Unblocks operators, reduces state

State/Index

- Future Work
 - Inserted at source or internal (operator signaling)?
 - Does P unblock Q? Exists P? Rewrite Q?
 - Relation between P and memory for Q?

PODS 2002
Impact of Limited Memory

- Continuous streams grow unboundedly
- Queries may require unbounded memory
 - [ABBMW 02]
 - a priori memory bounds for query
 - Conjunctive queries with arithmetic comparisons
 - Queries with join need domain restrictions
 - Impact of duplication elimination
- Open – general queries

Approximate Query Evaluation

- Why?
 - Handling load – streams coming too fast
 - Avoid unbounded storage and computation
 - Ad hoc queries need approximate history
- How? Sliding windows, synopsis, samples, load-shed
- Major Issues?
 - Metric for set-valued queries
 - Composition of approximate operators
 - How is it understood/controlled by user?
 - Integrate into query language
 - Query planning and interaction with resource allocation
 - Accuracy-efficiency-storage tradeoff and global metric
Sliding Window Approximation

• Why?
 – Approximation technique for bounded memory
 – Natural in applications (emphasizes recent data)
 – Well-specified and deterministic semantics

• Issues
 – Extend relational algebra, SQL, query optimization
 – Algorithmic work
 – Timestamps?

Timestamps

• Explicit
 – Injected by data source
 – Models real-world event represented by tuple
 – Tuples may be out-of-order, but if near-ordered can reorder with small buffers

• Implicit
 – Introduced as special field by DSMS
 – Arrival time in system
 – Enables order-based querying and sliding windows

• Issues
 – Distributed streams?
 – Composite tuples created by DSMS?
Timestamps in JOIN Output

Approach 1
- User-specified, with defaults
- Compute output timestamp
- Must output in order of timestamps
- Better for **Explicit** Timestamp
- Need more buffering
- Get precise semantics and user-understanding

Approach 2
- Best-effort, no guarantee
- Output timestamp is exit-time
- Tuples arriving earlier more likely to exit earlier
- Better for **Implicit** Timestamp
- Maximum flexibility to system
- Difficult to impose precise semantics

Approximate via Load-Shedding

Handles scan and processing rate mismatch

Input Load-Shedding
- Sample incoming tuples
- Use when scan rate is bottleneck
- **Positive** – online aggregation
[Hellerstein, Haas, Wang]
- **Negative** – join sampling
[Chaudhuri, Motwani, Narasaya]

Output Load-Shedding
- Buffer input infrequent output
- Use when query processing is bottleneck
- **Example** – XJoin
[Urban, Franklin]
- Exploit synopses
Stream Query Language?

- SQL extension
- Sliding windows as first-class construct
 - Awkward in SQL, needs reference to timestamps
 - SQL-99 allows aggregations over sliding windows
- Sampling/approximation/load-shedding/QoS support?
- Stream relational algebra and rewrite rules
 - Aurora and STREAM
 - Sequence/Temporal Databases

Outline of Remaining Talk

- Stream Models and DSMS Architectures
- Query Processing
- Runtime and Systems Issues
- Algorithms
- Conclusion
DSMS Internals

- **Query plans**: operators, synopses, queues
- **Memory management**
 - Dynamic Allocation – queries, operators, queues, synopses
 - Graceful adaptation to reallocation
 - Impact on throughput and precision
- **Operator scheduling**
 - Variable-rate streams, varying operator/query requirements
 - Response time and QoS
 - Load-shedding
 - Interaction with queue/memory management

Queue Memory and Scheduling

[Babcock, Babu, Datar, Motwani]

- **Goal**
 - Given – query plan and selectivity estimates
 - Schedule – tuples through operator chains
- **Minimize total queue memory**
 - Best-slope scheduling is near-optimal
 - Danger of starvation for some tuples
- **Minimize tuple response time**
 - Schedule tuple completely through operator chain
 - Danger of exceeding memory bound
- **Open** – graceful combination and adaptivity
Queue Memory and Scheduling
[Babcock, Babu, Datar, Motwani]

Input

selectivity = 0.0
S3
Output

selectivity = 0.6
S2

selectivity = 0.2
S1

Net Selectivity

s1
s2
s3

best slope

starvation point

Time

Rate-Based & QoS Optimization

• [Viglas, Naughton]
 – Optimizer goal is to increase throughput
 – Model for output-rates as function of input-rates
 – Designing optimizers?

• Aurora – QoS approach to load-shedding

QoS

% tuples delivered

QoS

Delay

QoS

Output-value

Static: drop-based
Runtime: delay-based
Semantic: value-based

PODS 2002
Outline of Remaining Talk

- Stream Models and DSMS Architectures
- Query Processing
- Runtime and Systems Issues
- Algorithms
- Conclusion

Synopses

- Queries may access or aggregate past data
- Need bounded-memory history-approximation
- Synopsis?
 - Succinct summary of old stream tuples
 - Like indexes/materialized-views, but base data is unavailable
- Examples
 - Sliding Windows
 - Samples
 - Sketches
 - Histograms
 - Wavelet representation
Model of Computation

Increasing time

Memory: \(\text{poly}(1/e, \log N) \)
Query/Update Time: \(\text{poly}(1/e, \log N) \)

\(N \): # tuples so far, or window size
\(e \): error parameter

Many other results …

- **Histograms**
 - V-Opt Histograms
 [Gilbert, Guha, Indyk, Kotidis, Muthukrishnan, Strauss], [Indyk]
 - End-Biased Histograms (Iceberg Queries)
 [Manku, Motwani], [Fang, Shiva, Garcia-Molina, Motwani, Ullman]
 - Equi-Width Histograms (Quantiles)
 [Manku, Rajagopalan, Lindsay], [Khanna, Greenwald]
 - Wavelets
 Seminal work [Vitter, Wang, Iyer] + many others!

- **Data Mining**
 - Stream Clustering
 [Guha, Mishra, Motwani, O’Callaghan]
 [O’Callaghan, Meyerson, Mishra, Guha, Motwani]
 - Decision Trees
 [Domingos, Hulten], [Domingos, Hulten, Spencer]
Conclusion: Future Work

• Query Processing
 – Stream Algebra and Query Languages
 – Approximations
 – Blocking, Constraints, Punctuations

• Runtime Management
 – Scheduling, Memory Management, Rate Management
 – Query Optimization (Adaptive, Multi-Query, Ad-hoc)
 – Distributed processing

• Synopses and Algorithmic Problems

• Systems
 – UI, statistics, crash recovery and transaction management
 – System development and deployment

Thank You!