
DB Updates & NonMonotonic Reasoning
CS240B Notes

Notes based on Section 10.1 of Advanced Database Systems—Morgan Kaufmann, 1997

C. Zaniolo, April 2002

– p.1/10



Beyond Stratified Negation

• We need classes programs more powerful than those
were negation and aggregates are stratified

• The problem (at least in terms of fixpoint theory) is due
to the non-monotonic nature of the implicit negation

used in DBs and AI.
• Implicit negation: negative facts are inferred from the

absence of the opposite conclusion, under the
closed-world assumption

• Nonmonotonic reasoning, and knowledge
representation: a well-established research topic in AI.
The concept of circumscription was followed by default
theories and auto-epistemic logic; the concept of
stable models is recent.

– p.2/10



Open World and Closed World

• Open World: what is not part of the database or
the program is assumed to be unknown.

• Closed World: what is not part of the database or
the program is assumed to be false.

Databases and other information systems adopt the
Closed World Assumption (CWA).
If p is a base predicate with n arguments, then
¬p(a1, . . . , an) iff p(a1, . . . , an) is not true, i.e., it is not in
the fact base.

Unique name axiom: no two constants in the database

stand for the same semantic object.

– p.3/10



Open vs. Closed World: example

The absence of coolguy(“Clark Kent”) database
implies that ¬coolguy(“Clark Kent”), even though the
database contains a fact coolguy(“Super Man”).
For positive programs, the CWA is as follows: Let P be
a positive program, then each atom a ∈ BP :
1. a is true iff a ∈ T ↑ω

P (∅)

2. ¬a is true iff a /∈ T ↑ω
P (∅).

However the CWA for general programs (i.e.,
programs with negated goals) might lead to
inconsistencies.

– p.4/10



Paradoxes and Contradictions

In the village, the barber shaves everyone who does
not shave himself: Every villager, who does not shave
himself, is shaved by the barber

shaves(barber, X)← villager(X),¬shaves(X, X).

shaves(miller, miller).

villager(miller).

villager(smith).

villager(barber).

There is no problem with villager(miller), who shaves himself, and

therefore does not satisfies the body of the first rule.

– p.5/10



Paradoxes and Contradictions:cont

1. For villager(smith), given that shaves(smith, smith) is

not in our program, we can assume that

¬shaves(smith, smith); then, shaves(barber, smith) is

derived that is consistent with with the negative assumptions

made.

2. For villager(barber): under the assumption

¬shaves(barber, barber), the rule yields

shaves(barber, barber) which contradicts the initial

assumption.

3. If we do not initially assume ¬shaves(barber, barber), then

we cannot derive shaves(barber, barber) using this

program and by the CWA, we will have to assume

¬shaves(barber, barber), and end-up with a contradiction.
– p.6/10



Stable Models

Programs that have Stable Models avoid self-contradictions
Stability Transformation. Let P a program and I ⊆ BP be
an interpretation of P . Then groundM(P ) denote the
program obtained from ground(P ) by the following
transformation:

1. remove every rule having as a goals some literal ¬q

with q ∈ I

2. remove all negated goals from the remaining rules.
3. Example, where P = ground(P ):

p← ¬q.

q← ¬p.
– p.7/10



Stable Models–cont.

1. Let P be a program with model M . M is said to be
a stable model for P , when M is the least model of
groundM (P ).

2. groundM (P ) is a positive program, by construction:
so, its least model is T ↑ω(∅), where T denotes the
immediate consequence operator for groundM (P ).

3. Every stable model for P is a minimal model for P
and a minimal fixpoint for TP .

– p.8/10



Stable Models: properties

But minimal models or minimal fixpoints might not be
stable models. Example: M = {a} is the only model and
fixpoint for the program:

r1 : a← ¬a.

r2 : a← a.

1. This program has no stable model

2. A program can have zero stable models, one stable model or

several stable models

3. Theorem: Given a negative Datalog program P , deciding whether

this has a stable model isNP -complete

4. The existence of a stable model can depend on the database. For

instance, the barber program has a unique stable model after we

eliminate villager(barber).
– p.9/10



Multiple Models

A program can have several stable models.

p← ¬q

q ← ¬p

1. This has two stable models: M1 = {p} and M2 = {q}.

2. With multiple models, one needs to decide what the
intended semantics is: fin all models, or find one?
We take the second interpretation, which leads to the
concept of NonDeterminism.

3. Stratified Programs, however, always have a unique
stable model.

– p.10/10


	Beyond Strati{f}ied Negation
	Open World and Closed World
	Open vs. Closed World: example
	Paradoxes and Contradictions
	Paradoxes and Contradictions:cont
	Stable Models
	Stable Models--cont.
	Stable Models: properties
	Multiple Models

