
State-Based Reasoning and Temporal Logic
CS240B Notes

Notes based on Section 10.3 of Advanced Database Systems—Morgan Kaufmann, 1997

C. Zaniolo, April 2002

– p.1/13

Datalog1s

Discrete time, can be modelled using Datalog1S.
The discrete temporal domain consists of terms built
using the constant 0 and the unary function symbol +1
(written in postfix notation). For the sake of simplicity,
we will write n for

(. . . ((0

n times
︷ ︸︸ ︷

+1) + 1) . . . + 1)

if T is a variable in the temporal domain, then T , T + 1,
and T + n are valid temporal terms, where T + n

denotes

(. . . ((T

n times
︷ ︸︸ ︷

+1) + 1) . . . + 1)
– p.2/13

Example: The endless succession of
seasons

quarter(0, winter).

quarter(T + 1, spring)← quarter(T, winter).

quarter(T + 1, summer)← quarter(T, spring).

quarter(T + 1, fall)← quarter(T, summer).

quarter(T + 1, winter)← quarter(T, fall).

– p.3/13

Example: Recurring Schedules

Trains for Newcastle leave daily at 800 hours and then
every two hours until 2200 hours (military time)

before22(22).

before22(H)← before22(H + 1).

leaves(8, newcastle).

leaves(T + 2, newcastle)← leaves(T, newcastle),

before22(T + 2).

– p.4/13

Propositional Linear Temporal
Logic(PLTL)

PLTL is based on the notion that there is a succession
of states H = (S0, S1, . . .), called a history.

For instance, Trains to Newcastle can be modelled by
a predicate newcstl that holds true in the following
states: S8, S10, S12, S14, S16, S18, S20, S22, and it is false
everywhere else.

Modal operators are used to define in which states a

predicate p holds true.

– p.5/13

Propositional Linear Temporal Logic
(PLTL).

1. Atoms: Let p be an atomic propositional predicate.
Then p is said to hold in history H when p holds in
H ’s initial state S0.

For instance, ¬newcastl is true in our example since it
is true in S0

– p.6/13

Temporal Operators

In addition to the usual propositional operators ∨,∧,
and ¬, PLTL offers the following operators:

2. Next: Next p, denoted ©p, is true in history H,
when p holds in history H1 = (S1, S2, . . .).
Therefore, ©np, n ≥ 0, denotes that p is true in
history (Sn, Sn+1, . . .).
For instance,

©8newcastl ∧©9¬newcastl

is true since there is a train at 8 and no train at 9.

– p.7/13

Other Temporal Operators

3. Eventually: Eventually q, denoted Fq, holds when,
for some n, ©nq.

4. Until: p until q, denoted p U q, holds if, for some n,
©nq, and for every state k < n, ©kp.

– p.8/13

Other Operators

• For instance, the fact that q will never be true can
simply be defined as ¬Fq.

• The fact that q is always true is simply described
as ¬F(¬q)); the notation Gq is often used to
denote that q is always true.

• The operator p before q, denoted pBq can be
defined as ¬((¬p) U q)—that is, it is not true that p

is false until q.

– p.9/13

Applications

PLTL finds many applications, including temporal
queries and proving properties of dynamic systems.

For instance, the question “Is there a train to
Newcastle that is followed by another one hour later?”
can be expressed by the following query:

?F(newcstl ∧©newcstl)

– p.10/13

Temporal Reasoning with Datalog1S

Every query expressed in PLTL can also be expressed
in propositional Datalog1S (i.e., Datalog with only the
temporal argument).

For instance, the previous query can expressed by
query ?pair_to_newcstl, where:

pair_to_newcstl← newcstl(J) ∧ newcstl(J + 1).

– p.11/13

Temporal Reasoning with Datalog1S

Express p U q: p must be true at each instant in history,
until the first state in which q is true. Use recursion to
reason back in time and identify all states in history that
precede the first occurrence of q.

post_q(J + 1)← q(J).

post_q(J + 1)← post_q(J).

first_q(J)← q(J),¬post_q(J).

pre_first_q(J)← first_q(J + 1).

pre_first_q(J)← pre_first_q(J + 1).

fail_p_Until_q← pre_first_q(J),¬p(J).

p_Until_q← pre_q(0), ¬fail_p_Until_q.
– p.12/13

Datalog1S–cont.

A similar approach can be used to express other
operators of temporal logic. For instance, p B q can be
defined using the previous predicates and the rule

p_Before_q← p(J), pre_first_q(J).

– p.13/13

	Datalog$_{1s}$
	Example: The endless succession of seasons
	Example: Recurring Schedules
	Propositional Linear Temporal Logic(PLTL)
	Propositional Linear Temporal Logic (PLTL).
	Temporal Operators
	Other Temporal Operators
	Other Operators
	Applications
	Temporal Reasoning with $d 1s$
	Temporal Reasoning with $d 1s$
	 $d 1s$--cont.

