State-Based Reasoning and Temporal Logic

CS240B Notes

Notes based on Section 10.3 of Advanced Database Systems-Morgan Kaufmann, 1997

C. Zaniolo, April 2002

Discrete time, can be modelled using $Datalog_{1S}$. The discrete temporal domain consists of terms built using the constant 0 and the unary function symbol +1 (written in postfix notation). For the sake of simplicity, we will write *n* for

$$\dots ((0+1)+1)\dots+1)$$

if T is a variable in the temporal domain, then T, T + 1, and T + n are valid temporal terms, where T + n denotes

$$(\dots((T+1)+1)\dots+1)$$

Example: The endless succession of seasons

 $\begin{array}{ll} quarter(0, \texttt{winter}).\\ quarter(T+1, \texttt{spring}) \leftarrow & quarter(T, \texttt{winter}).\\ quarter(T+1, \texttt{summer}) \leftarrow & quarter(T, \texttt{spring}).\\ quarter(T+1, \texttt{fall}) \leftarrow & quarter(T, \texttt{summer}).\\ quarter(T+1, \texttt{winter}) \leftarrow & quarter(T, \texttt{fall}). \end{array}$

Trains for Newcastle leave daily at 800 hours and then every two hours until 2200 hours (military time)

Propositional Linear Temporal Logic(PLTL)

PLTL is based on the notion that there is a succession of states $H = (S_0, S_1, ...)$, called a *history*.

For instance, Trains to Newcastle can be modelled by a predicate newcstl that holds true in the following states: $S_8, S_{10}, S_{12}, S_{14}, S_{16}, S_{18}, S_{20}, S_{22}$, and it is false everywhere else.

Modal operators are used to define in which states a predicate p holds true.

Propositional Linear Temporal Logic (PLTL).

 Atoms: Let p be an atomic propositional predicate. Then p is said to hold in history H when p holds in H's initial state S₀.

For instance, $\neg newcastl$ is true in our example since it is true in S_0

In addition to the usual propositional operators \lor , \land , and \neg , PLTL offers the following operators:

2. *Next:* Next p, denoted $\bigcirc p$, is true in history H, when p holds in history $H_1 = (S_1, S_2, \ldots)$. Therefore, $\bigcirc^n p$, $n \ge 0$, denotes that p is true in history (S_n, S_{n+1}, \ldots) . For instance,

$$\bigcirc^{8} new castl \land \bigcirc^{9} \neg new castl$$

is true since there is a train at 8 and no train at 9.

- 3. *Eventually:* Eventually q, denoted $\mathcal{F}q$, holds when, for some n, $\bigcirc^n q$.
- 4. *Until:* p until q, denoted p U q, holds if, for some n, $\bigcirc^n q$, and for every state k < n, $\bigcirc^k p$.

- For instance, the fact that q will never be true can simply be defined as $\neg \mathcal{F}q$.
- The fact that q is always true is simply described as ¬F(¬q)); the notation Gq is often used to denote that q is always true.
- The operator p before q, denoted pBq can be defined as ¬((¬p) U q)—that is, it is not true that p is false until q.

PLTL finds many applications, including temporal queries and proving properties of dynamic systems.

For instance, the question "Is there a train to Newcastle that is followed by another one hour later?" can be expressed by the following query:

 $?\mathcal{F}(\texttt{newcstl} \land \bigcirc \texttt{newcstl})$

Every query expressed in PLTL can also be expressed in propositional $Datalog_{1S}$ (i.e., Datalog with only the temporal argument).

For instance, the previous query can expressed by query <code>?pair_to_newcstl</code>, where:

 $\texttt{pair_to_newcstl} \gets \texttt{newcstl}(J) \land \texttt{newcstl}(J+1).$

Express p U q: p must be true at each instant in history, until the first state in which q is true. Use recursion to reason back in time and identify all states in history that precede the first occurrence of q.

 $post_q(J+1) \leftarrow q(J).$ $post_q(J+1) \leftarrow post_q(J).$ $q(J), \neg post_q(J).$ $first_q(J) \leftarrow$ pre_first_q(J) \leftarrow first_q(J+1). pre_first_q(J) \leftarrow pre_first_q(J+1). fail_p_Until_q \leftarrow pre_first_q(J), $\neg p(J)$. $pre_q(0)$, $\neg fail_p_Until_q$. $p_Until_q \leftarrow$

A similar approach can be used to express other operators of temporal logic. For instance, p \mathcal{B} q can be defined using the previous predicates and the rule

 $p_Before_q \leftarrow p(J), pre_first_q(J).$