
Beyond Stratification
CS240B Notes

Notes based on Section 10.4 of Advanced Database Systems—Morgan Kaufmann, 1997

C. Zaniolo, April 2002

– p.1/11

Introduction

• Many proposals—e.g., locally stratified programs and well

founded models–on how to go beyond stratified negation

• Objective is to approach the power of stable model, without

its exponential complexity.

• also the semantic well-formedness of the program can be

determined from the rules (independent of the DB) as for

stratified programs

• XY-stratification: is a particular class of locally stratified

programs for which we also have a simple compile-time

check, and an efficient implementation

• In fact, XY-stratified programs are particular Datalog1s

programs.
– p.2/11

Stratification by the Temporal
Argument

Ancestors of marc and their generation gap expressed
using the differential fixpoint:

r1 : delta_anc(0, marc).
r2 : delta_anc(J + 1, Y)← delta_anc(J, X), parent(Y, X),

¬all_anc(J, Y).
r3 : all_anc(J + 1, X)← all_anc(J, X).
r4 : all_anc(J, X)← delta_anc(J, X).

– p.3/11

Stratification by the temporal
Argument: cont.

1. This program is locally stratified by the first argument in anc

that serves as temporal argument.

2. The zero stratum consists of atoms of nonrecursive
predicates such as parent and of atoms that unify with
all anc(0, X) or delta anc(0, X), where X can be any
constant in the universe

3. The kth stratum contains atoms all anc(k, X) and
delta anc(k, X).
Thus, this program is locally stratified, since the heads of
recursive rules belong to strata that are one above those of
their goals.

– p.4/11

X-rules and Y-rules

• r is an X-rule when the temporal argument (TA) in every

recursive predicate in r is the same variable (e.g., J),
• r is a Y-rule when for some variable J

1. the head of r has J + 1 as its TA
2. some goal of r has as TA J , and
3. the remaining recursive goals have either J or J + 1 as

their TAs.

XY-programs: Let P be a set of rules defining mutually recursive

predicates. Then we say that P is an XY-program when:

1. Every recursive predicate of P has a distinguished temporal

argument.
2. Every recursive rule r is either an X-rule or a Y-rule.

– p.5/11

The Old and the New

Given an XY -program P , its bi-state program, Pbis, is computed

as follows: For each r ∈ P ,

1. Rename all the recursive predicates in r that have the same temporal

argument as the head of r with the distinguished prefix new .

2. Rename all other occurrences of recursive predicates in r with the

distinguished prefix old .

3. Drop the temporal arguments from the recursive predicates.

new_delta_anc(marc).

new_delta_anc(Y)← old_delta_anc(X), parent(Y, X),
¬old_all_anc(Y).

new_all_anc(X)← new_delta_anc(X).

new_all_anc(X)← old_all_anc(X).
– p.6/11

XY-stratificatied Programs

Definition: Let P be an XY-program. P is said to be
XY-stratified when Pbis is a stratified program.

Our previous program is stratified with the following strata:

S0 = {parent, old_all_anc, old_delta_anc},
S1 = {new_delta_anc}
S2 = {new_all_anc}

Theorem: Let P be an XY-stratified program. Then P has a
unique stable model.

– p.7/11

Computing the stable model of an
XY-stratified program P

Inititialize: Set T = 0 and insert the fact counter(T).

Forever repeat the following two steps:

1. Apply the iterated fixpoint computation to the synchronized

program Pbis, and for each recursive predicate q, compute

new q. Return the new q atoms so computed, after adding a

temporal argument T to these atoms; the value of T is taken

from counter(T).

2. For each recursive predicate q, replace old q with new q,

computed in the previous step. Then, replace counter(T)

with counter(T + 1).

• Copy rules
• When does the computation stop?

– p.8/11

Classical Algorithms can be
Expressed as XY-stratified programs

A simple example: Coalescing after Temporal
Projection.

emp_dep_sal(1001, shoe, 35000, 19920101, 19940101).
emp_dep_sal(1001, shoe, 36500, 19940101, 19960101).

These two tuples must be merged.

– p.9/11

Merging overlapping periods after a
temporal projection

e_hist(0, Eno, Frm, To)← emp_dep_sal(0, Eno, D, S, Frm, To).

overlap(J + 1, Eno, Frm1, To1, Frm2, To2)←
e_hist(J, Eno, Frm1, To1),
e_hist(J, Eno, Frm2, To2),
Frm1 ≤ Frm2, Frm2 ≤ To1,

distinct(Frm1, To1, Frm2, To2).

e_hist(J, Eno, Frm1, To)← overlap(J, Eno, Frm1, To1, Frm2, To2),
select_larger(To1, To2, To).

e_hist(J + 1, Eno, Frm, To)← e_hist(J, Eno, Frm, To),
overlap(J + 1, _, _, _, _, _),
¬overlap(J + 1, Eno, Frm, To, _, _),
¬overlap(J + 1, Eno, _, _, Frm, To).

final e hist(Eno, Frm, To)← e hist(J, Eno, Frm, To),
¬e hist(J + 1, , ,).

– p.10/11

Temporal Projection–auxiliary
predicates

distinct(Frm1, To1, Frm2, To2)← To1 6= To2.

distinct(Frm1, To1, Frm2, To2)← Frm1 6= Frm2.

select_larger(X, Y, X)← X ≥ Y.

select_larger(X, Y, Y)← Y > X.

– p.11/11

	Introduction
	Strati{f}ication by the Temporal Argument
	Strati{f}ication by the temporal Argument: cont.
	X-rules and Y-rules
	The Old and the New
	XY-strati{f}icatied Programs
	Computing the stable model of an XY-strati{f}ied program P
	Classical Algorithms can be Expressed as XY-strati{f}ied programs
	Merging overlapping periods after a temporal projection
	Temporal Projection--auxiliary predicates

