
NonDeterministic Reasoning
CS240B Notes

Notes based on Section 10.6 of Advanced Database Systems—Morgan Kaufmann, 1997

C. Zaniolo, April 2002

– p.1/11

Nondeterminism and FD constraints

With relation student(Name, Majr, Year), our university
database contains the relation professor(Name, Majr). A
toy database with only the following facts:

student(′Jim Black′, ee, senior). professor(ohm, ee).

professor(bell, ee).

elig_adv(S, P)← student(S, Majr, Year), professor(P, Majr).

We obtain:
elig adv(′Jim Black′, ohm).

elig adv(′Jim Black′, bell).

But, a student can only have one advisor!? – p.2/11

Choice Goals

Then, in a language such as LDL++ the goal
choice((S), (P)) can be added to force the selection of a
unique advisor, out of the eligible advisors, for a
student:
Computation/selection of unique advisors by choice rules

actual_adv(S, P)← student(S, Majr, Levl),

professor(P, Majr), choice((S), (P)).

More declaratively, the goal choice((S), (P)) can also be viewed
as enforcing a functional dependency (FD) S→ P; thus, in
actual adv, the second column (professor name) is functionally
dependent on the first one (student name).

– p.3/11

Many Applications of Choice

Given the two relations boy(Bname), girl(Gname),:
Are there more boys than girls in our database?

match(Bname, Gname)← boy(Bname), girl(Gname).

choice((Bname), (Gname)),

choice((Gname), (Bname)).

matched_boy(Bname)← match(Bname, Gname).

moreboys← boy(Bname), ¬matched_boy(Bname).

– p.4/11

Choice by Negation

actual_adv(S, P)← student(S, Majr, Yr), professor(P, Majr),

choice((S), (P)).

The stable version for the adivisor rule:

actual adv(S, P)← student(S, Majr, Yr), professor(P, Majr),

chosen(S, P).

chosen(S, P)← student(S, Majr, Yr), professor(P, Majr),

¬diffChoice(S, P).

diffChoice(S, P)← chosen(S, P′), P 6= P′.

This program has two stable models. One in which ohm is chosen as

advisor of JimBlack, and the other where bell is chosen instead.
– p.5/11

Choice Models

1. A program where the rules contain choice goals is
called a choice program.

2. The semantics of a choice program P can be defined
by transforming P into a program with negation,
SV (P), called the stable version of a choice program
P .

3. SV (P) exhibits a multiplicity of stable models, each
obeying the FDs defined by the choice goals.

4. Each stable model for SV (P) corresponds to an
alternative set of answers for P and is called a choice
model for P .

– p.6/11

Properties

In general, the program SV (P) generated by the transformation

discussed above has the following properties:

• SV (P) has one or more total stable models.
• The chosen atoms in each stable model of SV (P) obey the

FDs defined by the choice goals.

The stable models of SV (P) are called choice models for P .
Stratified Datalog programs with choice are in DB-PTIME:
actually they can be implemented efficiently by producing
chosen atoms one at a time and memorizing them in a table.
The diffchoice atoms need not be computed and stored;
rather, the goal ¬diffchoice can simply be checked
dynamically against the table chosen.

– p.7/11

Choice in Recursion

For instance, the following program computes the spanning
tree, starting from the source node a, for a graph where an
arc from node b to d is represented by the database fact
g(b, d).
Computing a spanning tree

st(root, a).

st(X, Y)← st(_, X), g(X, Y), Y 6= a, choice((Y), (X)).

The goal Y 6= a ensures that, in st, the end-node for the arc produced

by the exit rule has an in-degree of one;
likewise, the goal choice((Y), (X)) ensures that the end-nodes for the
arcs generated by the recursive rule have an in-degree of one.

– p.8/11

Ordering a Domain

The following program defines a total order for the
elements of a set d(X) by constructing an
immediate-successor relation for its elements (root is a
distinguished new symbol):

ordered_d(root, root).
ordered_d(X, Y)← ordered_d(_, X), d(Y),

choice((X), (Y)), choice((Y), (X)).

Once an arc (X, Y) is generated, this is the only arc leaving the source
node X and the only arc entering the sink node Y.

– p.9/11

DB-PTIME without Total Order

1. stratified Datalog programs with choice are DB-PTIME
complete, without having to assume that the universe
is totally ordered (i.e., respecting the genericity
assumption).

2. Here we accept any order. Since we accept any choice
model, we have don‘t care non-determinism and the
computation remains polynomial.

3. For certain queries, we might still a deterministic result:
e.g., in the computation of aggregates which are
commutative and associative.

– p.10/11

Beyond Don’t Care Non-Determinism

In many situations, we seek to satisfy a condition that holds or
does not hold depending on the choice made. Thus, we might
want to seek among the choice models one that satisfy the
condition. Alternatively, we might make a choice and then
backtrack to the next choice once we find that the condition does
not hold. Thus an exponential computation is often required.
Hamiltonian path in a graph: A graph has a Hamiltonian path iff
there is a simple path that visits all nodes exactly once.

simplepath(root, root).

simplepath(X, Y)← simple_path(_, X), g(X, Y),

choice((X), (Y)), choice((Y), (X)).

nonhppath← n(X), ¬ simplepath(, X).

q ← ¬q, nonhppath.
– p.11/11

Hamiltonian Path

simplepath(root, root).

simplepath(X, Y)← simple_path(_, X), g(X, Y),

choice((X), (Y)), choice((Y), (X)).

nonhppath← n(X), ¬ simplepath(, X).

q ← ¬q, nonhppath.

If nonhppath is true in M , then rule q ← ¬q must also be satisfied

by M . Thus, M cannot be a stable model. Thus, this program has a

stable model iff there exists a Hamiltonian path. Thus, deciding whether

a stable model exists for a program isNP -hard.

– p.12/11

	Nondeterminism and FD constraints
	Choice Goals
	Many Applications of Choice
	Choice by Negation
	Choice Models
	Properties
	Choice in Recursion
	Ordering a Domain
	DB-PTIME without Total Order
	Beyond Don't Care Non-Determinism
	Hamiltonian Path

