
Top-Down Execution
CS240B Notes

Notes based on Section 9.4 of Advanced Database Systems—Morgan Kaufmann, 1997

C. Zaniolo, March 2002

– p.1/22



Top-Down Execution of Datalog

• A strict bottom-up execution strategy is frequently
not natural nor efficient.

• Pure top-down, SLD-resolution, Prolog
• Mixing top-down and bottom-up in deductive

databases

– p.2/22



Passing Bindings from Goals to
Heads

r1 : part_weight(No, Kilos)← part(No,_, actualkg(Kilos)).

r2 : part_weight(No, Kilos)← part(No, Shape, unitkg(K)),

area(Shape, Area), Kilos = K ∗ Area.

r3 : area(circle(Dmtr), A)← A = Dmtr ∗ Dmtr ∗ 3.14/4.

r4 : area(rectangle(Base, Height), A)← A = Base ∗ Height.

The goal area(Shape, Area) in rule r1 can be viewed as a call to the

procedure area defined by rules r3 and r4.

Thus Shape is instantiated to circle(11) by the execution of r3, and

rectangle(10, 20) and r4.

– p.3/22



Passing Bindings from Goals to
Heads–cont.

• Instantiated to c means “assigned the value of the
constant c”. Shape/rectangle(10, 20) denotes that
Shape has been instantiated to rectangle(10, 20).

• Arguments can be complex; thus the passing of
parameters is performed through a process known
as unification.

• Shape/rectangle(10, 20) is made equal to (unified
to) the first argument of the second area rule,
rectangle(Base, Height), by setting Base/10
and Height/20.

– p.4/22



Substitutions

Substitutions: A substitution θ is a finite set of the form
{v1/t1, . . . , vn/tn}, where each vi is a distinct variable, and
each ti is a term distinct from vi. Each ti is called a binding
for vi.
The substitution θ is called a ground substitution if every ti

is a ground term. (Then X/θ is an instantiation of X to θ.)
Eθ denotes the result of applying the substitution θ to E;
i.e., of replacing each variable with its respective binding.
For instance, if E = p(x, y, f(a)) and θ = {x/b, y/x}. Then
Eθ = p(b, x, f(a)). If γ = {x/c}, then Eγ = p(c, y, f(a)).

Thus variables that are not part of the substitution are left

unchanged.
– p.5/22



Composition of Substitutions

Let θ = {u1/s1, . . . , um/sm} and δ = {v1/t1, . . . , vn/tn} be
substitutions.
Then the composition θδ of θ and δ is the substitution
obtained from the set

{u1/s1δ, . . . , um/smδ, v1/t1, . . . , vn/tn}

by deleting any binding ui/siδ for which ui = siδ and
deleting any binding vj/tj for which vj ∈ {u1, . . . , um}.

– p.6/22



Composing Substitutions: Example

Let θ = {(x/f(y), y/z)} and δ = {x/a, y/b, z/y}.
Then θδ = {x/f(b), z/y}.

θ δ θδ

x/f(y) x/a x/f(b)

y/z y/b y/y

z/z z/y z/y

– p.7/22



Unification

A substitution θ is called a unifier for two terms A and
B if Aθ = Bθ.
Example The two terms p(f(x), a), and p(y, f(w)) are not
unifiable, because the second arguments cannot be
unified (i.e., they cannot be made identical)

The two terms p(f(x), z), and p(y, a) are unifiable, since

δ = {y/(f(a), x/a, z/a)} is a unifier.

– p.8/22



Most General Unifier

• A unifier θ for two terms is called a most general
unifier (mgu), if for each other unifier γ, there exists
a substitution δ such that γ = θδ.

• δ = {y/(f(a), x/a, z/a)} is not the mgu of p(f(x), z),
and p(y, a).
A most general unifier for these two is
θ = {y/(f(x), z/a}. Note that δ = θ{x/a}.

• There exist efficient algorithms to perform
unification: such algorithms either return a most
general unifier or report that none exists.

– p.9/22



Resolvent of rule r and goal g

A rule r : A← B1, . . . , Bn, and A query goal ← g, r and
g have no variables in common.
If ∃ a most general unifier (mgu) δ for A and g, the goal
list:

← B1δ, . . . , Bnδ.

is called resolvent of r and g.

– p.10/22



SLD-Resolution Algorithm

Input: A first-order program P and a goal list G.

Output: A Gδ that was proved from P , or failure.

begin Set Res = G;

While Res is not empty, repeat the following:

Choose a goal g from Res;

Choose a rule A← B1, . . . , Bn(n ≥ 0) from P

such that A and g unify under the mgu δ,

(renaming the variables in the rule as needed);

If no such rule exists, then output failure and exit.

else Delete g from Res;

Add B1, . . . , Bn to Res;

Apply δ to Res and G;

If Res is empty then output Gδ

end
– p.11/22



SLD-resolution. Example

s(X, Y)← p(X, Y), q(Y).

p(X, 3).

q(3).

q(4).

1. The initial goal list is:← s(5, W)

2. This unifies the head of the first rule with mgu: {X/5, Y/W}.

New goal list:← p(5, W), q(W)

3. Say that we choose q(W) as a goal: it unifies with the fact q(3),

under the substitution {W/3}: ← p(5, 3)

This unifies with the fact p(X, 3) under the substitution {X/5}.

The goal list becomes empty and we report success.

Thus, a top-down evaluation returns the answer {W/3} for the

query← s(5, W). from the example program. But if we choose

q(4), . . .

– p.12/22



Examples of SLD-Resolution

Any realization of the top-down evaluation procedure will have to

make two choices at each step by selecting

1. the next goal from the goal list and
2. the rule whose head unifies with the selected goal.

In general, there will be more than one goal and many rules to

choose from. The choice affects the efficiency of the deduction

process and also the actual result when the search falls into an

infinite loop.
PROLOG interpreters usually choose goals in a left-to-right
order and rules in a sequential order that corresponds to a
depth-first search of the SLD-tree with backtracking when failure
occurs. Thus, PROLOG treats the goal list as a stack onto which
goals are pushed or popped, depending on success or failure.

– p.13/22



The SLD-Refutation Procedure

Example: the goal← p(x,b) on program
1. p(x,z)← q(x,y), p(y,z)
2. p(x,x)←
3. q(a,b)←

A finite SLD-tree is shown at the left.
This SLD-tree comes from
the standard Prolog computation
rule that selects the leftmost atom.
Selected atoms are underlined.

¡
¡
¡¡

@
@
@@

¡
¡
¡¡

@
@
@@

.

.

.

p(X, b)

1 2

3

1 2

q(X,Y) , p(Y, b)

p(b,b)

q(b,Z), p(Z, b)

←

←

←

← X/a

X/b

denotes success.

– p.14/22



← p(X,b)
1. p(X,z)← q(X,Y), p(Y,Z)
2. p(X,X)←
3. q(a,b)←

¡
¡
¡
¡

@
@
@
@

1 2

¡
¡
¡
¡

@
@
@
@

1 2

@
@
@
@

¡
¡

¡
¡

@
@@

¡
¡

1 2

X/b

p(X, b)←

q(X,Y) , p(Y, b)←

←q(X, b)

←q(X, Y), q(Y,b)←q(X,Y), q(Y, Z), q(Z, U), p(U, b)

X/a

←q(X,a)infinite

1 2
3

3

←q(X,Y), g(Y, Z), p(Z,b)

An infinite SLD-tree.

failure – p.15/22



Success Set

• SLD-derivations can be finite or infinite.

• A finite SLD-derivation can be successful or failed.

• A successful SLD-derivation is a finite one that
ends in the empty clause. This is also called an
SLD-refutation.

• A failed SLD-derivation is a finite one that ends in a
non-empty goal, where the selected atom in this
goal does not unify with the head of any program
clause.

• Definition Let P be a program. The success set of P is
the set of all A ∈ BP such that P ∪{← A} has an
SLD-refutation (i.e., there exist some successful
derivation for it).

– p.16/22



Equivalent Semantics

Theorem: The success set of a program is equal to its
least Herbrand model.
• Equivalence of the three formal semantics. (Least

Model, Least Fixpoint, and SLD-resolution).
• SLD-resolution is a form of theorem proving (an

efficient one).
• In general, generation of the success requires that

all choices are visited in a breadth-first fashion.
This too inefficient for practical languages such as
Prolog that use depth-first instead.

– p.17/22



Satisfiability

Let S be a set of closed formulas. We say that S is
satisfiable when there is an interpretation that is a model
for S.
S is valid if every interpretation of L is a model for S.
S is unsatisfiable if it has no models.
Theorem: Let S be a set of clauses. Then S is unsatisfiable
iff S has no Herbrand models.
We say F is a logical consequence of S if, every
interpretation that is a model for S is also a model for F .
Note that if S = {F1, ..., Fn} is a finite set of closed
formulas, then F is a logical consequence of S iff
F1 ∧ ... ∧ Fn → F is valid.

– p.18/22



Refutation

S = {F1, ..., Fn} is a finite set of closed formulas, then F

is a logical consequence of S iff F1 ∧ ... ∧Fn → F is valid.
Theorem: Let S be a set of closed formulas and F be a
closed formula. Then F is a logical consequence of S iff
S ∪ {¬F} is unsatisfiable.
Thus to prove a goal G from a set of rules and facts P we
simply have to prove that P ∪ {← G} is unsatisfiable—i.e.,
we have to refute P ∪ {← G}.
Resolution theorem proving does exactly that: It refutes the
goal list.
Prolog can be viewed in that light. But, actually, there is no
real refutation—just procedural composition via unification.
The term SLD stands for Selected literal Linear resolution
(or refutation) strategy over Definite clauses.

– p.19/22



Prolog

• Depth-first exploration of alternatives, where goals
are always chosen in a left-to-right order and the
heads of the rules are also considered in the order
they appear in the program.

• The programmer is given responsibility for ordering
the rules and their goals in such a fashion as to
guide Prolog into successful and efficient
searches.

• The programmer must also make sure that the
procedure never falls into an infinite loop.

– p.20/22



Prolog

Example: The goal ?anc(marc, mary) on the program:

anc(X, Y)← anc(X, Y), parent(Y, Z).

anc(X, Z)← parent(X, Y).

This causes an infinite loop that never returns any result.

– p.21/22



Programming in Prolog

A solution to the previous problems is to put the exit
rule before the recursive one.

anc(X, Y)← parent(X, Y).

anc(X, Z)← anc(X, Y), parent(Y, Z).

Prolog loops after the generation of all the results. To make things
work parent must be put before anc in the recursive rule. A
skill not hard to learn.

Cycles in the parent database will also cause problems— SLD-

resolution has no memory.

– p.22/22


	Top-Down Execution of Datalog
	Passing Bindings from Goals to Heads
	Passing Bindings from Goals to Heads--cont.
	Substitutions
	Composition of Substitutions
	Composing Substitutions: Example
	Uni{f}ication
	Most General Uni{f}ier
	Resolvent of rule r and goal g 
	SLD-Resolution Algorithm
	SLD-resolution. Example
	Examples of SLD-Resolution 
	The SLD-Refutation Procedure
	
	Success Set
	Equivalent Semantics
	Satis{f}iability
	Refutation
	Prolog
	Prolog
	Programming in Prolog

