
Magic Sets
CS240B Notes

Notes based on Section 9.5 of Advanced Database Systems—Morgan Kaufmann, 1997

C. Zaniolo, March 2002

– p.1/13

The Same-Generation Example

People are of the same generation if their parents are
of the same generation

?sg(marc, Who).

sg(X, Y)← parent(XP, X), sg(XP, YP), parent(YP, Y).

sg(A, A).

This program cannot be computed in a bottom-up fashion because the

exit rule is not safe.

Even if we make it safe by adding a goal such as people(A), bottom-

up computation would be inefficient since all same-generation pairs are

produced, while we only want those that have marc as their first compo-

nent. – p.2/13

Top-Down Computation for
same-generation

?sg(marc, Who).

sg(X, Y)← parent(XP, X), sg(XP, YP), parent(YP, Y).

sg(A, A).

• If parent(tom, marc) is in the database, the resolvent of the

query goal with the first rule is

← parent(XP, marc), sg(XP, YP), parent(YP, Y).

Then, by unifying the first goal with the fact parent(tom, marc),

the new goal list becomes:

← sg(tom, YP), parent(YP, Y).

• The binding has been passed from the first argument in the head

to the first argument in the body of the recursive predicate. X and

XP are instantiated, while Y and YP remain unbound. – p.3/13

Only ancestors of marc are of
interest

The sg rules are linear, but not left-linear or right-linear.
Say that the predicate m.sg(X) computes the ancestors of
marc.
We can add m.sg(X) to the exit rule to make it safe, and to
the recursive rule to make it more selective:

?sg′(marc, Z).

sg′(X, X)← m.sg(X).

sg′(X, Y)← parent(XP, X), sg′(XP, YP), parent(YP, Y), m.sg(X).

m.sg(X) is called the magic predicate for sg and can be computed from
the original program as follows:

m.sg(marc).

m.sg(XP)← m.sg(X), parent(XP, X). – p.4/13

Computing the Magic Predicate

?sg(marc, Who).

sg(X, Y)← parent(XP, X), sg(XP, YP), parent(YP, Y).

sg(A, A).

Binding analysis of the top-down behavior.
The first argument in the query: thus X is bound and through goal
parent(XP, X) the binding is passed to XP in the recursive goal.
The variables Y, YP remain unbound.
The rules for the magic predicates can be obtained by:
(1) using the query constant as the exit rule (a fact).
(2) using the top-down bound arguments and predicates for the
exit rule—however head and tail must be reversed!

– p.5/13

The Counting Method

“People who are of the same generation as marc". Is
logically equivalent to:

1. Find the ancestors of marc and their levels, where marc is a

zero-level ancestor of himself, his parents are

first-generation (i.e., first-level) ancestors, his grandparents

are second-generation ancestors, and so on. (This

computation is performed by the predicate sg_up)
2. Switch to the computation of descendants

3. Perform the computation of descendants—while

descreasing the level by one at each step

This is performed by the predicate sg_dwn in
4. Check when you return to level 0 to find those who are of the

same generation as marc.
– p.6/13

The Counting Method—cont.

Find ancestors of marc, and then their descendants

sg_up(0, marc).
sg_up(J + 1, XP)← parent(XP, X), sg_up(J, X).
sg_dwn(J, X)← sg_up(J, X).
dwn(J− 1, Y)← sg_dwn(J, YP), parent(YP, Y).
?dwn(0, Z).

– p.7/13

The counting method: pros and cons

• The counting method is often more efficient than
the magic-set method.

• However it is not as general: e.g. if we add the
goal X 6= Y to ensure that you to leave out marc from
the people who are of the same generation as
marc, then we must memorize.

• Cycles in the database will throw it into a loop–just
as Prolog

• Many approaches to get methods that combine the
strengths of magic and counting have been
developed.

– p.8/13

Supplementary Magic Sets

m.sg(marc).

m.sg(XP)← m.sg(X), parent(XP, X).

spm.sg(X, XP)← parent(XP, X), m.sg(X).

sg′(X, X)← m.sg(X).

sg′(X, Y)← sg′(XP, YP), spm.sg(X, XP), parent(YP, Y).

?sg′(marc, Z).

%sg′(X, Y)← parent(XP, X), sg′(XP, YP), parent(YP, Y), m.sg(X).

In addition to the magic predicates, supplementary predicates

are used to store the pairs bound-arguments-in-head/bound-

arguments-in-recursive-goal.
– p.9/13

Supplementary Magic Sets

The magic set method and supplementary magic set
method are very similar–often the first term is used to
refer to both methods.
The magic predicate and the supplementary magic
predicate are normally written in a mutually recursive
form.

m.sg(marc).

spm.sg(X, XP)← m.sg(X), parent(XP, X)

m.sg(XP)← spm.sg(X, XP).

– p.10/13

Benefits of Memorizing

People who are of the same generation through
common ancestors who are less than 12 levels remote
and always lived in the same state

?stsg(marc, 12, Z).

stsg(X, K, Y)← parent(XP, X), K > 0, KP = K− 1,

born(X, St), born(XP, St),

stsg(XP, KP, YP),

parent(YP, Y).

stsg(X, K, X).

– p.11/13

Benefits of Memorizing—cont.

Since the first two arguments of stsg are bound. The
supplementary magic method for this example is:

m.stsg(marc, 12).

spm.stsg(X, K, XP, KP)← m.stsg(X, K),

parent(XP, X), K > 0, KP = K− 1,

born(X, St), born(XP, St).

m.stsg(X, K)← spm.stsg(X, K, XP, KP).

stsg(X, K, X) m.stsg(X, K).

stsg(X, K, Y)← stsg(XP, KP, YP), spm.stsg(X, K, XP, KP),

parent(YP, Y).

– p.12/13

Supplementary Magic Sets

• Only those variables that are needed for the
second fixpoint are stored in the supplementary
magic relations: thus St is not included.

• The method of choice in many prototypes because
of generality and robustness.

• the method works with cycles in the database
• Ability of storing one-way predicates, such as
X = f(Y, Z, . . .).

– p.13/13

	The Same-Generation Example
	Top-Down Computation for same-generation
	Only ancestors of marc are of interest
	Computing the Magic Predicate
	The Counting Method
	The Counting Method---cont.
	The counting method: pros and cons
	Supplementary Magic Sets
	Supplementary Magic Sets
	Bene{f}its of Memorizing
	Bene{f}its of Memorizing---cont.
	Supplementary Magic Sets

