
Compilation and Optimization
CS240B Notes

Notes based on Section 9.6 of Advanced Database Systems—Morgan Kaufmann, 1997

C. Zaniolo, April 2002

– p.1/25

Rule-Goal Graph

• The graph has as nodes rules with adorned predicate
names.

• The adornment of the predicate is the subscript that
denotes bound/free argument.

• The graph depicts all possible top-down, left-to-right
executions.

– p.2/25

Example

r1 : part_weight(No, Kilos)← part(No,_, actualkg(Kilos)).

r2 : part_weight(No, Kilos)← part(No, Shape, unitkg(K)),

area(Shape, Area), Kilos = K ∗ Area.

r3 : area(circle(Dmtr), A)← A = Dmtr ∗ Dmtr ∗ 3.14/4.

r4 : area(rectangle(Base, Height), A)← A = Base ∗ Height.

..

l
l
ll

%
%
%

.
@
@
@

¡
¡
¡

part weightff ←
partfff

part weightff ←

part weightff

partfff, areabf, =fb

areabf ←
=fb

areabf ←
=fb

r1 r2

r3 r4

– p.3/25

Construction of the rule-goal graph
rgg(P) for a nonrecursive program P

1. Initial step: The query goal is adorned according to the

constants and deferred constants (i.e., the variables

preceded by $), and becomes the root of rgg(P).

2. Bindings passing from goals to rule heads: If the calling goal

g unifies with the head of the rule r, with mgu γ, then we

draw an edge (labeled with the name of the rule, i.e., r) from

the adorned calling goal to the adorned head, where the

adornments for h(r) are computed as follows: (i) all

arguments bound in g are marked bound in h(r)γ; (ii) all

variables in such arguments are also marked bound; and

(iii) the arguments in h(r)γ that contain only constants or

variables marked bound in (ii) are adorned b, while the

others are adorned f .
– p.4/25

Rule-Goal graph for nonrecursive
P–cont

1. Left-to-right passing of bindings to goals:

A variable X is bound after the nth goal in a rule, if X is

among the bound head variables (as for the last step), or if

X appears in one of the goals of the rule preceding the nth

goal.

The (n + 1)th goal of the rule is adorned on the basis of the

variables that are bound after the nth goal.

– p.5/25

Unification of Goal and Head:
example

Goal ?g, with: g = p(f(X1), Y1, Z1, a)

Rule: r : p(X2, g(X2, Y2), Y2,W2)←

A most general unifier for g and h(r) is:

γ = {X2/f(X1), Y1/g(f(X1), Y2), Z1/Y2,W2/a}

Yielding: gγ = h(r)γ = h(r) = p(f(X1), g(f(X1), Y2), Y2, a)

If the adorned goal is pbffb: variables in the first argument of the

head (i.e., X1) are bound. The resulting adorned head is pbffb,

and there is an edge from pbffb to pbffb ←.
If the adorned goal is pfbfb: all the variables in the second
argument of the head (i.e., X1, Y2) are bound. Then the
remaining arguments of the head are bound as well. Draw an
edge from the adorned goal pfbfb to the adorned head pbbbb ←.

– p.6/25

Safety

Safe a-priori:

1. Base predicates are safe for every adornment. E.g., partfff

is safe.

2. θbb is safe for θ denoting any comparison operator, such as

≤ or >.

3. Special cases: =bf or =fb where the free argument consists

of only one variable: the arithmetic expression in the bound

argument can be computed and the resulting value can be

assigned to the free variable.(A more sophisticated compiler

could solve more equations and accept other patterns as

safe.)

– p.7/25

Inductive Definition for Safety

Let P be a program with rule-goal graph rgg(P), where
rgg(P) is a tree (DAGs can be reduced to trees):
Then P is safe if the following two conditions hold:

1. Every leaf node of rgg(P) is safe a priori, and

2. Every variable in every rule in rgg(P) is bound after
the last goal.

– p.8/25

Computation of a Safe Nonrecursive
Program with rule graph rgg(P)

1. First phase: the bound values of a goal’s arguments are

passed to its defining rules, i.e., its children in the rule-goal

graph.

2. Second phase: the goal receives the values of the

f -adorned arguments from its children.

Only the second computation takes place for goals without

bound arguments.

The heads of the rules are computed once all the goals in the

body are computed. We have a strict strati£cation where pred-

icates are computed according to the postorder traversal of the

rule-goal graph.
– p.9/25

Recursive Predicates

A choice of recursive methods must be performed along with the

binding passing analysis.

CASE1: no bound argument. The recursive predicate and all the

predicates that are mutually recursive with it are be computed in

a single differential fixpoint.

The construction of the rule graph for a recursive rule is the

same as for a non-recursive one.

1. The head of the rule is assumed to have no bound

argument, and
2. Safety analysis is performed by treating the recursive goals

(i.e., p and predicates mutually recursive with it) as safe a

priori—in fact, they are bound to the values computed in the

previous step.
– p.10/25

Binding passing analysis for
recursive predicates

The Same-Generation query:

Á %

$'
?

Z
Z
Z~

?stsgbbf

parentbf, >bb,=fb,
bornbf, bornbb,
stsgbbf

stsgbbf ←

Only chain goals are used in the top-down propagation.

– p.11/25

qγ is a chain goal if:

1. SIP independence of recursive goals: q is not a recursive goal

(i.e., not the same predicate as that in the head of r, nor a

predicate mutually recursive with q; however, recursive

predicates of lower strata can be used as chain goals).
2. Selectivity: qγ has some argument bound
3. Safety: qγ is a safe goal.

The basic idea behind the notion of chain goals is that the

binding in the head will have to reduce the search space. Any

goal that is called with all its adornment free will not be beneficial

in that respect.

Also, there is no sideway information passing (SIP) between two

recursive goals; bindings come only from the head through

nonrecursive goals.
– p.12/25

Safety–Cont

• If q is not a recursive predicate, then safety is
determined as previously described.

• If q is a recursive goal, then it belongs to a lower
stratum; therefore, safety can be determined
independently using the techniques described here for
recursive predicates.

• Since we have a finite number of strata the process
terminates.

– p.13/25

Algorithm for Binding Passing
Analysis

1. Initially A = {qγ}, with qγ the initial goal, where q is
a recursive predicate and γ is not a totally free
adornment.

2. For each h ∈ A, pass the binding to the heads of
rules defining q.

3. For each recursive rule, determine the adornments
of its recursive goals (i.e., of q or predicates
mutually recursive with q).

4. If the last step generated adornments not currently
in A, add them to A and resume from step 2.
Otherwise halt.

– p.14/25

Binding Passing Property

The calling goal g is said to have the

1. binding passing property when A does not contain
any recursive predicate with totally free
adornment.

2. Unique binding passing property: if binding
passing property holds and A contains one pattern
for each recursive predicate.

– p.15/25

Selecting a Method for Recursion

Using the rewriting for the magic sets method, which can then be

used as the basis for left/right-linear rules. E.g.:

?anc(tom, Desc).

anc(Old, Young)← parent(Old, Young).

anc(Old, Young)← anc(Old, Mid), parent(Mid, Young).

m.anc(tom).

m.anc(Old)← m.anc(Old).

The magic relation anc now contains only tom. We can substitute this value

directly into the rules.The recursive magic rule is trivial and can be eliminated:

trivial first phase.
– p.16/25

Trivial Second Phase for right-linear
rules

?anc(tom, Desc).

anc(Old, Young)← father(Old, Young).

anc(Old, Young)← parent(Old, Mid), anc(Mid, Young).

m.anc(tom).

m.anc(Mid)← m.anc(Old), parent(Old, Mid).

anc′(Old, Young)← m.anc(Old), father(Old, Young).

anc′(Old, Young)← parent(Old, Mid), anc′(Mid, Young),

m.anc′(Old).

?anc′(tom, Young).

The recursive rule only copies the value of Young generated by
the exit rule, from the tail to the head. This value of Young is
returned as an answer if, after a few iterations, Old = tom. This is
always true since this rule re-visits the magic-set computation.

– p.17/25

Trivial Second Phase–Cont

Thus the recursive rule can be dropped along with the
condition in the first argument of the query goal, yielding:
After dropping the recursive rule can be dropped along
with the condition in the first argument of the query goal,
we obtain:

m.anc(tom).

m.anc(Mid)← m.anc(Old), parent(Old, Mid).

anc′(Old, Young)← m.anc(Old), father(Old, Young).

?anc′(_, Young).

– p.18/25

Generalizations

• Unique binding property. Relaxing this assumption
does not require major modifications or extensions

• No Sideway Information Passing (SIP) between
recursive goals: only goals from lower strata can
be used as chain goals
This assumption can be removed yielding the
Generalized Magic Set method.
The programs produced by this extension tend to
be complex and inefficient to execute.

• In the CORAL system, not all the variables are
required to be instantiated after a goal executes.

– p.19/25

Optimization

In relational databases there are two kinds of
optimizations

1. Greedy optimization: whenever a technique is
applicable apply it. E.g., always push selection
and projection into relational expressions.
Computationally this is not very expensive

2. Cost Based Optimization: evaluate alternatives
and predict the cost. Then choose the
least-expected-cost solution. This is done for
choosing a join order. Basically exponential in the
number of joins being evaluated.

Deductive Database prototypes follow mostly the first
approach.

– p.20/25

Selecting a method for recursion

1. The binding passing property is tested, and if satisfied

2. The applicability of the following methods are considered in

the order shown:

1. left- right-linear rules

[1.5 Counting Method]

2. magic or supplementary magic sets

[2.5 Generalized magic sets methods]

Most systems do not bother with [1.5] or [2.5].

– p.21/25

Optimization—cont.

1. Ideally, the cost/benefits of different recursive methods

should be quantified and compared. But quantification is

expensive and prediction is unreliable.

In practice, therefore, very coarse criteria are used

instead—e.g., chain goals in the SIP.
2. Even for nonrecursive rules, full cost-based optimization is

problematic (many goals deeply stacked). Heuristics

approaches are used instead. E.g., Glue/Nail! uses the

following Heuristic: Do First goals with more bound

argument; and between two goals with the same number of

bound arguments, select those which have fewer unbound

arguments.
3. Following the order of goals specified by the user— in

LDL++ and Prolog.
– p.22/25

Existential Variables: Optimization

Existential Variables.

p(X)← q1(X, Y), q2(Y, Z),¬q3(W)

If q2(Y, Z) succeeds or fails for certain value of Y, there is no need
to find all the other values of Y.
Same for W. Y and W are existential variables.
A tuple a tuple-oriented model of computation:

(i) Get-first tuple in relation (joining with the previous
tuples, if any)
(ii) Get-next of same, and repeat this step till no more
such tuples

For q1(X, Y) both steps must me performed.
For q3(W) and q2($Y, Z) only step (i) is executed.

– p.23/25

Three-Way Join

← p1(X, Y), p2(Y, Z), p3(Y, W)

The basic nested-loop join:
Loop 1: for each tuple in p1 do

Loop 2: for each tuple in p2 (joining with p1) do
Loop 3: for each tuple in p3

(joining with p1 and p2) do
return the computed tuple

end Loop 3
end Loop 2

end Loop 1.
But if p3(Y, W) fails on first (i.e., step (i) fails) there is no
point in going back to Loop 2, since only a new value
of Y can make it succeed!

– p.24/25

Strength and Weakness of Deductive
DB Technology

A rather powerful and sophisticated technology to
support rules and queries on Databases. But
problems, such as optimization, require some work.
But the main problems seem to be limitations in terms
of expressive power.

• Does not support negation and aggregates in
recursion

• Active rules are not supported and updates are
only supported as imperative extensions.

– p.25/25

	Rule-Goal Graph
	Example
	Construction of the rule-goal graph $rgg(P)$
for a nonrecursive program P
	Rule-Goal graph for nonrecursive P--cont
	Uni{f}ication of Goal and Head: example
	Safety
	em Inductive De{f}inition for Safety
	Computation of a Safe Nonrecursive Program with rule graph $rgg(P)$
	 Recursive Predicates
	Binding passing analysis for recursive predicates
	$q^gamma $ is a chain goal if:
	Safety--Cont
	 Algorithm for Binding Passing Analysis
	Binding Passing Property
	Selecting a Method for Recursion
	Trivial Second Phase for right-linear rules
	Trivial Second Phase--Cont
	Generalizations
	Optimization
	Selecting a method for recursion
	Optimization---cont.
	Existential Variables: Optimization
	Three-Way Join
	Strength and Weakness of Deductive DB Technology

