Lecture 10: Deadlock; domains; virtual memory
5/8/2007

By Brandy (xiaoqin) Liu

· Deadlock cmd1|cat|cmd2

for (;;) {


read (0, buf, bufsize)  


write (1, buf, bufsize)

}


Replace read() and write() above into single call as the following

copy(0, 1, bufsize)  ( 0: input pipe, 1: output pipe

· Code for the copy function:


copy(struct pipe *in, struct pipe *out) {



acquire(&in ( lock);



acquire(&out ( lock);



if(in ( w – in ( r != 0 && out ( w – out ( r != N)




out ( buf[out ( w ++ %N] = in ( buf[in ( r++ %N];



release(&out ( lock); 


release(&in ( lock);


}

· Deadlock example: (this happens to a lot of systems)
	Thread 2
	Thread 2
	Comments

	
copy(p, q);
	
copy(q, p);
	wrong order of p & q, can lead to deadlock

	
acquire(&p ( lock);
	
acquire(&q ( lock);
	

	wait
	wait
	wait can be different depends on what kind of lock it has


· Deadlock is a race condition: 4 danger signs indicating deadlock might happen

1) Circular wait – obvious

2) Mutual exclusion – 2 different treadss get the same lock at the same time. Doesn’t mean that mutual exclusion is bad but it may lead to deadlock.

3) Don’t have preemption of locks – no preemption for some particular thread.

4) Hold & wiat – hold one resouse A while waiting for another resouce B
·  How to prevent deadlock?
Students’ suggestions:

· In instead of having 2 locks, we can have one.

· Add a single globle lock to the function: this can solve the problem but it also kills the preformance bucause every pipe needs to get through this globle lock now.

Prof. Eggert’s solution: 
1) Lock ordering – use our esp to tell thread 2 to do it in the other order.
When you need > 1 lock, you obtain the locks in a well known order (Standard order), which should be known to all the threads



copy(struct pipe *in, struct pipe *out) {



if (&in ( lock < &out ( lock) {







acquire(&in ( lock);





acquire(&out ( lock);
} else {


acquire(&out ( lock);





acquire(&in ( lock);




}
· is this work? What about copy(p, p), copy p from p? we need to add one more condition in ≠ out. 
· Requires careful attendtion to detail. Makes sure that every thread i using the standard order. This is only work for small project. 
2) Deadlock detection

· System always looks out for deadlock.

· If discover, do something drastic

· Kill a thread

· Send a signal

· Inform the operator and let the operator to decide what to do

· Refuse the last lock attempt. Then the acquire will fail, and it leave the problem for the thread to deal with the acquire failure.

3) Graph: 

The following graph represents the code we have earlier has a circle.


4) Another example:  
Main program: create pipes


pipe(p1)


pipe(p2) 


if ((pid = ford)) {



dancing pipes twice



execlp(“sort”, …)


}


Dancing pipes


Write to p1


read from p2


wait for child 

· Main writes lots of data to its child, which is sort in this case. And at the same time, sort writes a lot of data to its parent main. Therefore, everyone writes, no one read. This will lead to deadlock.

· If main writes to both pipe1 and pipe2, another deadlock.

· How to solve this problem? Using deadlock detection. However, if it’s too expensive to do that, just don’t write codes that will leave to a deadlock.

· Performing factor
Performing Matrices for I/O


for(;;){



char buf[40];



read 40 bytes from disk to buf



compute(buf);


}


 Assumptions:

· 1 GHz CPU, 1ns cycles

· PIO instructions 1000 cycles = 1μs. This tends to be slow, because it needs to go out to the buffer.

· Send command to disk = 5 PIOs = 5μs

· Disk latency = 50μs

· The computation for 1 buffer = 500 cycles = 5μs

· Read the data from the disk when it’s ready = 40 PIO = 40μs

· Interrupt handler = 5μs

· Check ready = 1μs

·  The following are 5 different ways to implement the above codes
1) Simple implementation with polling/busy wait situation.

Matrices: 

· Utilization – % of CPU devote to useful work. In our case, computation is the useful work. 
· Throughput – number of requests you can compute per second. (Reqts/s or Hz)

· Latency – how long it takes for the request to go into the system and completed. Delay between request and completion. (s)

	Latency
	5μs    +  50μs         +  40μs      +  5μs    = 100μs
send   + disk latency + read data + compute

	Throughput
	1/latency = 1/100μs = 10,000 Hz

	Utilization
	5μs/100μs = 5%


2)   Batching:

for(;;){


char buf[21][40]; 


read 21*40 byte from disk to buf.


for (int i=0; i<21; i++)



compute(buf [i]);

}

	Latency
	5μs    +  50μs         +  21*40μs      +  5μs    = 1000μs = 1ms
send   + disk latency + read data       + compute

	Throughput
	21/latency = 1/1ms = 21,000 Hz

	Utilization
	105μs/1000μs = 10.5%


· The latency above isn’t quite right. In real life, the average case should be the following:

(900+905+ … + 995+1000) / 21 = 947.5μs.

· Is there a better way to improve the latency? We will try to hide the latency by letting the CPU does something else while waiting.

For polling/busy wait: use send cmd, overlap with our own computation.


for (;;){




char buf[ ]




read … send cmd wait again




compute(buf)

}


3) Device interrupts: use the new method we mentioned above, but with better improvement.
Change the way the I/O works

	Old codes
	New codes

	for (;;){

send cmd to disk

while(! (disk is ready))

    continue;

read buffer;

compute(buf);

}
	


· Basic idea: not just overlap the computation with our own computation but also with some other program’s computation while waiting (assume there are lots real work to do)
·  
	Latency
	5μs  +          50μs         +           5μs        +       1μs       + 40μs + 5μs = 106μs

send + block till interrupt + handle interrupt + check ready + read   + compute

	Throughput
	1/latency = 1/56μs  = 17,857 Hz

	Utilization
	5μs/56μs = 8.9%


· The above case has another big bottle neck: read = 40μs. We can solve it with the next method, direct memory access.
4) Direct memory access.
· Assumptions: the disk controller is smart enough to access RAM directly. we can access the disk controller “directly”, (like RAM). Send a cmd to disk ≈ 100μs
·  

for (;;) {

send cmd to disk;

block until interrupt;

check disk is ready;

compute




}

	Latency
	0μs  +          50μs         +           5μs        +       1μs       +  5μs = 61μs

send + block till interrupt + handle interrupt + check ready + compute

	Throughput
	1/latency = 1/11μs  = 91,000 Hz

	Utilization
	5μs/11μs = 45%


· Can we do better than this? Kill off the next big bottle neck: handle interrupt = 5μs 
given that compute = 5μs is the best we can get.
We can do this with the next method named DMA with polling.

5) DMA with polling: 
Replace “block until interrupt;” in DMA with the following codes

while (DMA slots not ready)

schedule();           ( let someone else run 

	Latency
	0μs  +          50μs         +       1μs       +  5μs = 56μs

send + block till interrupt + check ready + compute

	Throughput
	1/latency = 1/6μs  = 166,666.6 Hz

	Utilization
	5μs / 6μs = 84%


·  Comparison with all the methods we learn today.
	Method
	Latency
(μs)
	Throughput
(Kreqts/s)
	Utilization
	Comments

	Polling/busy wait
	100
	10
	5%
	Simple, low utilization & throughput

	Batching
	947.5
	21
	10.5%
	Bad latency, better utilization & throughput

	Device Interrupt
	106
	18
	8.9%
	Better, but still not a good utilization

	DMA
	61
	91
	45%
	Most used, but not the best in this case

	DMA with polling
	56
	167
	84%
	Best to pull in this case. yay, we win!!


[image: image1.png]
send



The order of release() here doesn’t matter, so we can flip the last 2 line of codes here.





T1





T2







p (lock





q (lock



Nodes are threads and locks, arc are dependencies.

T ( L: T waits for L

L ( T: L is held by T



We should make sure no such a circle exist in our programs.



main





sort



pipe1



pipe2



Pick 21 to make it simple, but in real life, they choose some number w/ the power of 2





CPU



I/O



I/O



CPU



send



do{

block until there is an interrupt

handle interrupt;

} while (! (disk is ready));



This 50μs doesn’t count in the throughput and utilization because it’s used for some other program.





