240B: Advanced Data and Knowledge Bases:
Sample of topics for presentations and projects
Event Processing Languages and Systems
[Query languages for complex events. 1--3: early proposals. 4 language+optimization.
5+6 proposed standards+blog]
- Seshadri, P., Linvy, M., And Ramakrishnan, R. 1994. In Proceedings of ACM
SIGMOD Conference on Management of Data. ACM, New York, 430441.
- Seshadri, P., Livny, M., And Ramakrishnan, R. 1995. SEQ: A model for sequence
databases. In
ICDE. 232239.
- Ramakrishnan, R., Donjerkovic, D., Ranganathan, A., Beyer, K., and Krishnaprasad,
SRQL: Sorted relational query language. In Proceedings of the 10th Annual
International Conference
on Scientific and Statistical Database Management (Capri, Italy, July 13),
1988, 8495.
- Reza Sadri, Carlo Zaniolo, Amir Zarkesh, Jafar Adibi: Expressing and optimizing
sequence queries in database systems. ACM Transactions on Database Systems
(TODS) Volume 29 , Issue 2 (June 2004).
- Fred Zemke, Andrew Witkowski, Mitch Cherniak, Latha Colby, Pattern matching
in sequences of row, ANSI change proposal, March 27, http://www.cs.ucla.edu/classes/spring07/cs240B/notes/row-pattern-recogniton-11.pdf.
- Discussion Blog for above: http://tkyte.blogspot.com/2007/04/so-in-your-opinion.html
[Event Processing using WebSpere]
IBM Redbooks | WebSphere Business Integration Adapter Development , http://www.redbooks.ibm.com/abstracts/redp9119.html?Open
Ana Biazetti and Kim Gadja: Achieving complex event processing with Active
Correlation Technology--Rule your domains with rules to trigger automated processes.http://www.ibm.com/developerworks/autonomic/library/ac-acact/index.html
[Event Processing using Java Message Service]
Sun's official JMS site includes documentation, FAQs and a JMS vendor list.
java.sun.com/products/jms/
[Pub/Sub]
Patrick Th. Eugster et al.: The many faces of publish/subscribe. CM Computing
Surveys (CSUR) archive
Volume 35 , Issue 2 (June 2003), 114 - 131.
Data Streams
[Overviews]
B. Babcock, S. Babu, M. Datar, R. Motwani, J. Widom: Models and Issues in Data
Stream
Systems. PODS 2002: 1-16
Lukasz Golab and M. Tamer ¨Ozsu. Issues in data stream management. ACM
SIGMOD Record, 32(2):514, 2003.
[Language and Systems]
- Arvind Arasu, Shivnath Babu, Jennifer Widom: The CQL continuous query language:
semantic foundations and query execution. VLDB J. 15(2): 121-142 (2006)
- Hari Balakrishnan, Magdalena Balazinska, Donald Carney, Ugur Çetintemel,
Mitch Cherniack, Christian Convey, Eduardo F. Galvez, Jon Salz, Michael Stonebraker,
Nesime Tatbul, Richard Tibbetts, Stanley B. Zdonik: Retrospective on Aurora.
VLDB J. 13(4): 370-383 (2004).
- Charles D. Cranor, Theodore Johnson, Oliver Spatscheck, Vladislav Shkapenyuk:
Gigascope: A Stream Database for Network Applications. SIGMOD Conference 2003:
647-651
- Arvind Arasu, Mitch Cherniack, Eduardo F. Galvez, David Maier, Anurag Maskey,
Esther Ryvkina, Michael Stonebraker, Richard Tibbetts: Linear Road: A Stream
Data Management Benchmark. VLDB 2004.
- Yan-Nei Law, Haixun Wang, Carlo Zaniolo: Query Languages and Data Models
for Database Sequences and Data Streams. VLDB 2004. 492-503.
- J. Chen, D. J. DeWitt, F. Tian, and Y. Wang. NiagaraCQ: A scalable continuous
query system for internet databases. In Proc. of the 2000 ACM SIGMOD Intl.
Conf. on Management of Data, pages 379-390, May 2000.
- Sam Madden, Mehul A. Shah, Joseph M. Hellerstein, Vijayshankar Raman: Continuously
Adaptive Continuous Queries over Streams. SIGMOD 2002, 49-61.
- D. Barbara. The characterization of continuous queries. Intl. Journal
of Cooperative Information Systems, 8(4):295-323, 1999.
- S. Chandrasekaran and M. Franklin. Streaming queries over streaming data.
In VLDB, 2002.
- J. Chen, D. J. DeWitt, F. Tian, and Y. Wang. NiagaraCQ: A scalable continuous
query system for internet databases. In SIGMOD, pages 379-390, May
2000.
- H. Jagadish, I. Mumick, and A. Silberschatz. View maintenance issues for
the chronicle data model. In PODS, pages 113-124, 1995.
- L. Liu, C. Pu, and W. Tang. Continual queries for internet scale event-driven
information delivery. IEEE TKDE, 11(4):583-590, 1999.
|
- M. Sullivan. Tribeca: A stream database manager for network traffic analysis.
In VLDB, 1996.
- D. Terry, D. Goldberg, D. Nichols, and B. Oki. Continuous queries over
append-only databases. In SIGMOD, pages 321-330, 1992.
[Windows, Operators and Timestamps]
- Arvind Arasu, Jennifer Widom: Resource Sharing in Continuous Sliding-Window
Aggregates. VLDB 2004.
- Utkarsh Srivastava, Jennifer Widom: Memory-Limited Execution of Windowed
Stream Joins. VLDB 2004: 324-335
- Yijian Bai, Hetal Thakkar, Chang Luo, Haixun Wang, Carlo Zaniolo: A Data
Stream Language and System Designed for Power and Extensibility. Proc. of
the ACM 15th Conference on Information and Knowledge Management (CIKM'06),
2006.
- Yijian Bai et al., Optimizing Timestamp Management in Data Stream Management
Systems, ICDE 2007.
- Theodore Johnson, S. Muthukrishnan, Vladislav Shkapenyuk, Oliver Spatscheck:
A Heartbeat Mechanism and Its Application in Gigascope. VLDB 2005: 1079-1088.
- Utkarsh Srivastava, Jennifer Widom: Flexible Time Management in Data Stream
Systems. PODS 2004: 263-274
- Jin Li, David Maier, Kristin Tufte, Vassilis Papadimos, Peter A. Tucker:
Semantics and Evaluation Techniques for Window Aggregates in Data Streams.
SIGMOD Conference 2005: 311-322.
[Approximate Query Answering on Data Streams]
- Swarup Acharya, Phillip B. Gibbons, Viswanath Poosala,Sridhar Ramaswamy:
Join Synopses for Approximate Query Answering. SIGMOD1999, pp.275--286.
- Abhinandan Das, Johannes Gehrke, Mirek Riedewald: Approximate Join
Processing Over Data Streams.
SIGMOD2003, pp.40--51.
- Yan-Nei Law, and C. Zaniolo, Load Shedding for Window Joins on
Multiple Data Streams. First International Workshop on Scalable Stream Processing
Systems (SSPS'07)
April 16-20, 2007, Istanbul, Turkey.
- A Robust, Optimization-Based Approach for Approximate Answering of Aggregate
Queries. By Surajit Chaudhuri, Gautam Das, Vivek Narasayya ACM
SIGMOD/PODS 2001
- On Computing Correlated Aggregates Over Continual Data Streams. By Johannes
Gehrke (Cornell Univ.), Flip Korn, and Divesh Srivastava ACM
SIGMOD/PODS 2001
- Space-Efficient Online Computation of Quantile Summaries. By Michael Greenwald
and Sanjeev Khanna (Univ. of Pennsylvania)
ACM SIGMOD/PODS 2001
- Alin Dobra, Minos N. Garofalakis, Johannes Gehrke, Rajeev Rastogi: Processing
complex aggregate queries over data streams. SIGMOD2002, pp.61--72.
- Arvind Arasu, Gurmeet Singh Manku. Approximate Counts and Quantiles over
Sliding Windows. In the ACM Symposium on Principles of Database Systems (PODS)
2004.
- Brian Babcock, Chris Olston. Distributed Top-k Monitoring. In the ACM International
Conference on Management of Data (SIGMOD) 2003.
- Brian Babcock, Mayur Datar, Rajeev Motwani, LiadanO O'Callaghan. Maintaining
Variance and k-Medians over Data Stream Windows. In the ACM Symposium on Principles
of Database Systems (PODS) 2003.
- Brian Babcock, Mayur Datar, Rajeev Motwani: Load Shedding for Aggregation
Queries over Data Streams.
ICDE2004, pp.350--361.
- Jeffrey Considine, Feifei Li, George Kollios, John W. Byers:Approximate
Aggregation Techniques for Sensor Databases. ICDE 2004.
- Tao Li, Qi Li, Shenghuo Zhu, Mitsunori Ogihara: A Survey on Wavelet Applications
in Data Mining.
SIGKDD Explorations 2002 4(2), pp.49--68.
- Minos N. Garofalakis, Phillip B. Gibbons: Wavelet synopses with error guarantees.
SIGMOD 2002, pp.476--487.
- Anna C. Gilbert, Yannis Kotidis, S. Muthukrishnan, Martin Strauss: Surfing
Wavelets on Streams: One-Pass Summaries for Approximate Aggregate Queries.
VLDB2001, pp.79--88.
- Kaushik Chakrabarti, Minos N. Garofalakis, Rajeev Rastogi, Kyuseok Shim:
Approximate Query Processing Using Wavelets. VLDB2000, pp.111--122.
[Scheduling, Load Shedding, and Distributed Processing]
- B. Babcock, S. Babu, M. Datar, and R. Motwani. Chain: Operator Scheduling
for Memory Minimization in Data Stream Systems To appear in Proc. of the ACM
Intl Conf. on Management of Data (SIGMOD 2003), June 2003
- Donald Carney, Ugur Çetintemel, Alex Rasin, Stanley B. Zdonik, Mitch
Cherniack, Michael Stonebraker: Operator Scheduling in a Data Stream Manager.
VLDB 2003: 838-849.
- Brian Babcock, Mayur Datar, Rajeev Motwani: Load Shedding for Aggregation
Queries over Data Streams. ICDE 2004.
- Nesime Tatbul, Ugur etintemel, Stanley B. Zdonik, Mitch Cherniack, Michael
Stonebraker: Load Shedding in a Data Stream Manager.VLDB2003, pp.309--320.
- Jeong-Hyon Hwang, Magdalena Balazinska, Alex Rasin, Ugur Çetintemel,
Michael Stonebraker, Stanley B. Zdonik: High-Availability Algorithms for Distributed
Stream Processing. ICDE 2005: 779-790.
- Magdalena Balazinska, Hari Balakrishnan, Samuel Madden, Michael Stonebraker:
Fault-tolerance in the Borealis distributed stream processing system. SIGMOD
Conference 2005: 13-24.
[Processing of Streaming XML documents]
- M. Altinel and M. J. Franklin. Efficient Filtering of XML Documents
for Selective Dissemination of Information. In Proc. Of VLDB, 2000.
[Xfilter]
- C.-Y. Chan, P. Felber, M. Garofalakis, and R. Rastogi. Efficient
Filtering of XML Documents with XPath Expressions. In Proc. of ICDE,
2002.
- Z. G. Ives, A. Y. Halevy, D. S. Weld. An XML Query Engine for Network-Bound
Data. In VLDB Journal, 2002.
- J. Chen, D. J. Dewitt, F. Tian, Y. Wang. NiagaraCQ: a scalable continuous
query system for internet databases. In Proc. Of SIGMOD, 2002.
- C. Barton, P. Charles, D. Goyal, M. Raghavachari, M. Fontoura, and V. Josifovski.
Streaming XPath Processing with Forward and Backward Axes. In
Proc. of ICDE, 2003.
- Y. Diao, M. Altinel, M. Franklin, et al. Path Sharing and Predicate Evaluation
for High-Performance XML Filtering.
In TODS, pages 467516, 2003.
- Xin Zhou, Hetal Thakkar and Carlo Zaniolo: Unifying the Processing of XML
Streams and Relational Data Streams, ICDE 2006.
Data Mining Systems
- Tomasz Imielinski and Heikki Mannila. A database perspective on knowledge
discovery. Communication ACM, 39(11):58, 1996.
- S. Sarawagi, S. Thomas, and R. Agrawal. Integrating association rule mining
with relational database systems: Alternatives and implications. In SIGMOD,
1998.
- T. Imielinski and A. Virmani. MSQL: a query language for database mining.
Data Mining and Knowledge Discovery, 3:373--408, 1999.
- J. Han, Y. Fu, W. Wang, K. Koperski, and O. R. Zaiane. DMQL: A data mining
query language for relational databases. In Workshop on Research Issues on
Data Mining and Knowledge Discovery (DMKD), pages 27--33, Montreal, Canada,
June 1996.
- R. Meo, G. Psaila, and S. Ceri. A new SQL-like operator for mining association
rules. In VLDB, pages 122--133, Bombay, India, 1996.
- Marco Botta, Jean-Francois Boulicaut, Cyrille Masson, and Rosa Meo. Query
languages supporting descriptive rule mining: A comparative study. In Database
Support for Data Mining Applications, pages 24--51, 2004.
- Carlo Zaniolo: Mining Databases and Data Streamswith Query Languages and
Rules: Invited Talk, Fourth International Workshop on Knowledge Discovery
in Inductive Databases, KDID 2005.
- ORACLE. Oracle Data Miner Release 10gr2: http://www.oracle.com/technology/products/bi/odm.
- Data Mining Group (DMG). Predictive model markup language (pmml). http://sourceforge.net/projects/pmml.
- Z. Tang, J. Maclennan, and P. Kim. Building data mining solutions with OLE
DB for DM and XML analysis. SIGMOD Record, 34(2):8085, 2005.
Mining Data Bases and Data Streams
Clustering
[Book] G. J. McLachlan and K.E. Bkasford. Mixture Models: Inference and Applications
to Clustering. John Wiley and Sons, 1988.
[Book] L. Kaufman and P. J. Rousseeuw. Finding Groups in Data: an Introduction
to Cluster Analysis. John Wiley & Sons, 1990.
[CLARANS] R. Ng and J. Han. Efficient and effective clustering method for spatial
data mining. VLDB'94.
[CLIQUE] R. Agrawal, J. Gehrke, D. Gunopulos, and P. Raghavan. Automatic subspace
clustering of high dimensional data for data mining applications. SIGMOD'98
[OPTICS] M. Ankerst, M. Breunig, H.-P. Kriegel, and J. Sander. Optics: Ordering
points to identify the clustering structure, SIGMOD99.
[Text] Beil F., Ester M., Xu X.: "Frequent Term-Based Text Clustering",
KDD'02
[Outliers] M. M. Breunig, H.-P. Kriegel, R. Ng, J. Sander. LOF: Identifying
Density-Based Local Outliers. SIGMOD 2000.
[DBSCAN] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. A density-based algorithm
for discovering clusters in large spatial databases. KDD'96.
[Categorical] D. Gibson, J. Kleinberg, and P. Raghavan. Clustering categorical
data: An approach based on dynamic systems. VLDB98.
[Categorical] V. Ganti, J. Gehrke, R. Ramakrishan. CACTUS Clustering Categorical
Data Using Summaries. KDD'99.
[CURE] S. Guha, R. Rastogi, and K. Shim. Cure: An efficient clustering algorithm
for large databases. SIGMOD'98.
[ROCK] S. Guha, R. Rastogi, and K. Shim. ROCK: A robust clustering algorithm
for categorical attributes. In ICDE'99, pp. 512-521, Sydney, Australia, March
1999.
[Hierarchical] G. Karypis, E.-H. Han, and V. Kumar. CHAMELEON: A Hierarchical
Clustering Algorithm Using Dynamic Modeling. COMPUTER, 32(8): 68-75, 1999.
[Outliers] E. Knorr and R. Ng. Algorithms for mining distance-based outliers
in large datasets. VLDB98.
[DENCLUE] A. Hinneburg, D.l A. Keim: An Efficient Approach to Clustering in
Large Multimedia Databases with Noise. KDD98
[Wavelets] G. Sheikholeslami, S. Chatterjee, and A. Zhang. WaveCluster: A multi-resolution
clustering approach for very large spatial databases. VLDB98.
[Constraints] A. K. H. Tung, J. Han, L. V. S. Lakshmanan, and R. T. Ng. Constraint-Based
Clustering in Large Databases, ICDT'01.
[p-cluster] H. Wang, W. Wang, J. Yang, and P.S. Yu. Clustering by pattern
similarity in large data sets, SIGMOD 02.
[STING] W.. Wang, Yang, R. Muntz, STING: A Statistical Information grid Approach
to Spatial Data Mining, VLDB97.
[BIRCH] T. Zhang, R. Ramakrishnan, and M. Livny. BIRCH : an efficient data clustering
method for very large databases. SIGMOD'96.
[Data Stream Clustering]
- Liadan O'Callaghan, Adam Meyerson, Rajeev Motwani, Nina Mishra, Sudipto
Guha: Streaming-Data Algorithms for High-Quality Clustering. ICDE 2002: 685+
- Sudipto Guha, Adam Meyerson, Nina Mishra, Rajeev Motwani, Liadan O'Callaghan:
Clustering Data Streams: Theory and Practice. IEEE Trans. Knowl. Data Eng.
15(3): 515-528 (2003)
- C. Aggarwal, J. Han, J. Wang, P. S. Yu. A Framework for Clustering Data
Streams, VLDB'03
- C. Aggarwal, J. Han, J. Wang, and P. S. Yu. A Framework for Projected Clustering
of High Dimensional Data Streams, VLDB'04.
[Association Rule Mining]
R. Agrawal, T. Imielinski, and A. Swami. Mining association rules between
sets of items in large databases. SIGMOD'93.
R. Agrawal and R. Srikant. Fast algorithms for mining association rules. VLDB'94
J. S. Park, M. S. Chen, and P. S. Yu. An effective hash-based algorithm for
mining association rules. SIGMOD'95.
A. Savasere, E. Omiecinski, and S. Navathe. Mining for strong negative associations
in a large database of customer transactions. ICDE'98.
D. Tsur, J. D. Ullman, S. Abitboul, C. Clifton, R. Motwani, and S. Nestorov.
Query flocks: A generalization of association-rule mining. SIGMOD'98.
H. Mannila, H Toivonen, and A. I. Verkamo. Discovery of frequent episodes in
event sequences. DAMI:97.
M. Zaki. SPADE: An Efficient Algorithm for Mining Frequent Sequences. Machine
Learning:01.
(Max-pattern) R. J. Bayardo. Efficiently mining long patterns from databases.
SIGMOD'98.
(Closed-pattern) N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal. Discovering
frequent closed itemsets for association rules. ICDT'99.
(FP-Growth) J. Han, J. Pei, and Y. Yin. Mining frequent patterns without candidate
generation. SIGMOD 00.
J. Liu, Y. Pan, K. Wang, and J. Han. Mining Frequent Item Sets by Opportunistic
Projection. KDD'02
Gösta Grahne, Jianfei Zhu: Efficiently Using Prefix-trees in Mining Frequent
Itemsets. FIMI 2003
Zaki and Hsiao. CHARM: An Efficient Algorithm for Closed Itemset Mining, SDM'02.
R. Srikant and R. Agrawal. Mining generalized association rules. VLDB'95.
J. Han and Y. Fu. Discovery of multiple-level association rules from large databases.
VLDB'95.
B. Lent, A. Swami, and J. Widom. Clustering association rules. ICDE'97.
M. Klemettinen, H. Mannila, P. Ronkainen, H. Toivonen, and A. I. Verkamo. Finding
interesting rules from large sets of discovered association rules. CIKM'94.
S. Brin, R. Motwani, and C. Silverstein. Beyond market basket: Generalizing
association rules to correlations. SIGMOD'97.
C. Silverstein, S. Brin, R. Motwani, and J. Ullman. Scalable techniques for
mining causal structures. VLDB'98.
P.-N. Tan, V. Kumar, and J. Srivastava. Selecting the Right Interestingness
Measure for Association Patterns. KDD'02.
E. Omiecinski. Alternative Interest Measures for Mining Associations. TKDE03.
Y. K. Lee, W.Y. Kim, Y. D. Cai, and J. Han. CoMine: Efficient Mining of Correlated
Patterns. ICDM03.
[Association on Data Streams]
- G. Manku, R. Motwani. Approximate Frequency Counts over Data Streams,
VLDB02
- Richard M. Karp, Scott Shenker, Christos H. Papadimitriou: A simple algorithm
for finding frequent elements in streams and bags. ACM Trans. Database Syst.
28: 51-55 (2003)
- C. Giannella, J. Han, J. Pei, X. Yan and P.S. Yu. Mining frequent patterns
in data streams at multiple time granularities, Kargupta, et al. (eds.), Next
Generation Data Mining04
- Ahmed Metwally, Divyakant Agrawal, Amr El Abbadi: Efficient Computation
of Frequent and Top-k Elements in Data Streams. ICDT 2005: 398-412
[Classification]
- T.-S. Lim, W.-Y. Loh, and Y.-S. Shih. A comparison of prediction accuracy,
complexity, and training time of thirty-three old and new classification algorithms.
Machine Learning, 2000.
- J. Magidson. The Chaid approach to segmentation modeling: Chi-squared automatic
interaction detection. In R. P. Bagozzi, editor, Advanced Methods of Marketing
Research, Blackwell Business, 1994.
- M. Mehta, R. Agrawal, and J. Rissanen. SLIQ : A fast scalable classifier
for data mining. EDBT'96.
- J. R. Quinlan. Bagging, boosting, and c4.5. AAAI'96.
- R. Rastogi and K. Shim. Public: A decision tree classifier that integrates
building and pruning. VLDB98.
- J. Shafer, R. Agrawal, and M. Mehta. SPRINT : A scalable parallel classifier
for data mining. VLDB96.
- H. Yu, J. Yang, and J. Han. Classifying large data sets using SVM with hierarchical
clusters. KDD'03.
- J. Gehrke, R. Ramakrishnan, and V. Ganti. Rainforest: A framework for fast
decision tree construction of large datasets. VLDB98.
- X. Yin and J. Han. CPAR: Classification based on predictive association
rules. SDM'03..
- L. Breiman, J. Friedman, R. Olshen, and C. Stone. Classification and Regression
Trees. Wadsworth International Group, 1984.
- Haixun Wang, Carlo Zaniolo: CMP: A Fast Decision Tree Classifier Using Multivariate
Predictions. ICDE 2000: 449-460.
[Classification on Data Streams]
- P. Domingos and G. Hulten, Mining high-speed data streams, KDD'00
- C. C. Aggarwal, J. Han, J. Wang and P. S. Yu. On-Demand Classification of
Evolving Data Streams, KDD'04
- Fang Chu, Carlo Zaniolo: Fast and Light Boosting for Adaptive Mining of
Data Streams. PAKDD 2004: 282-292.
- Fang Chu, Yizhou Wang, Carlo Zaniolo: An Adaptive Learning Approach for
Noisy Data Streams. ICDM 2004: 351-354.
- C. C. Aggarwal, J. Han, J. Wang and P. S. Yu. On-Demand Classification of
Evolving Data Streams, KDD'04
- Yan-Nei Law, Carlo Zaniolo: An Adaptive Nearest Neighbor Classification
Algorithm for Data Streams. PKDD 2005: 108-120.
[Time Series]
C. Chatfield. The Analysis of Time Series: An Introduction, 3rd ed. Chapman
& Hall, 1984.
R.H. Shumway & D.S. Stoffer. Time Series Analysis and Its Applications:
With R Examples (2nd ed.), Springer Texts in Statistics, 2006. http://www.stat.pitt.edu/stoffer/tsa2/index.html
StatSoft. Electronic Textbook. www.statsoft.com/textbook/stathome.html
R. Agrawal, C. Faloutsos, and A. Swami. Efficient similarity search in sequence
databases. FODO93 (Foundations of Data Organization and Algorithms).
R. Agrawal, K.-I. Lin, H.S. Sawhney, and K. Shim. Fast similarity search in
the presence of noise, scaling, and translation in time-series databases. VLDB'95.
R. Agrawal, G. Psaila, E. L. Wimmers, and M. Zait. Querying shapes of histories.
VLDB'95.
C. Faloutsos, M. Ranganathan, and Y. Manolopoulos. Fast subsequence matching
in time-series databases. SIGMOD'94.
Carlo Zaniolo,Stefano Ceri,Christos Faloutsos, Richard T. Snodgrass,VS Subrahmanian,
Roberto Zicari. Advanced Database Systems (Chater 12), Morgan-Kaufmann, 1997.
Nasser Yazdani, Z. Meral Özsoyoglu: Sequence Matching of Images. SSDBM
1996: 53-62
Y. Moon, K. Whang, W. Loh. Duality Based Subsequence Matching in Time-Series
Databases, ICDE02
B.-K. Yi, H. V. Jagadish, and C. Faloutsos. Efficient retrieval of similar time
sequences under time warping. ICDE'98.
B.-K. Yi, N. Sidiropoulos, T. Johnson, H. V. Jagadish, C. Faloutsos, and A.
Biliris. Online data mining for co-evolving time sequences. ICDE'00.
Dennis Shasha and Yunyue Zhu. High Performance Discovery in Time Series: Techniques
and Case Studies, SPRINGER, 2004
L. R. Rabiner. A tutorial on hidden markov models and selected applications
in speech recognition. Proc. IEEE, 77:257--286, 1989.
R.Durbin, S.Eddy, A.Krogh and G.Mitchison. Biological Sequence Analysis: Probability
Models of Proteins and Nucleic Acids. Cambridge University Press, 1998.