240B: Advanced Data and Knowledge Bases: 
  
  Sample of topics for presentations and projects 
   
    
     
    
  
Event Processing Languages and Systems
[Query languages for complex events. 1--3: early proposals. 4 language+optimization. 
  5+6 proposed standards+blog]
  - Seshadri, P., Linvy, M., And Ramakrishnan, R. 1994. In Proceedings of ACM 
    SIGMOD Conference on Management of Data. ACM, New York, 430441.
 
  - Seshadri, P., Livny, M., And Ramakrishnan, R. 1995. SEQ: A model for sequence 
    databases. In
    ICDE. 232239. 
  - Ramakrishnan, R., Donjerkovic, D., Ranganathan, A., Beyer, K., and Krishnaprasad,
    SRQL: Sorted relational query language. In Proceedings of the 10th Annual 
    International Conference
    on Scientific and Statistical Database Management (Capri, Italy, July 13), 
    1988, 8495. 
  - Reza Sadri, Carlo Zaniolo, Amir Zarkesh, Jafar Adibi: Expressing and optimizing 
    sequence queries in database systems. ACM Transactions on Database Systems 
    (TODS) Volume 29 , Issue 2 (June 2004).
 
  - Fred Zemke, Andrew Witkowski, Mitch Cherniak, Latha Colby, Pattern matching 
    in sequences of row, ANSI change proposal, March 27, http://www.cs.ucla.edu/classes/spring07/cs240B/notes/row-pattern-recogniton-11.pdf. 
  
 
  - Discussion Blog for above: http://tkyte.blogspot.com/2007/04/so-in-your-opinion.html
   
[Event Processing using WebSpere]
IBM Redbooks | WebSphere Business Integration Adapter Development , http://www.redbooks.ibm.com/abstracts/redp9119.html?Open
Ana Biazetti and Kim Gadja: Achieving complex event processing with Active 
  Correlation Technology--Rule your domains with rules to trigger automated processes.http://www.ibm.com/developerworks/autonomic/library/ac-acact/index.html
[Event Processing using Java Message Service] 
Sun's official JMS site includes documentation, FAQs and a JMS vendor list. 
  java.sun.com/products/jms/
 [Pub/Sub]
  Patrick Th. Eugster et al.: The many faces of publish/subscribe. CM Computing 
  Surveys (CSUR) archive
  Volume 35 , Issue 2 (June 2003), 114 - 131.
Data Streams
[Overviews]
  B. Babcock, S. Babu, M. Datar, R. Motwani, J. Widom: Models and Issues in Data 
  Stream
  Systems. PODS 2002: 1-16 
 Lukasz Golab and M. Tamer ¨Ozsu. Issues in data stream management. ACM 
  SIGMOD Record, 32(2):514, 2003.
[Language and Systems]
  - Arvind Arasu, Shivnath Babu, Jennifer Widom: The CQL continuous query language: 
    semantic foundations and query execution. VLDB J. 15(2): 121-142 (2006)
    
   
  - Hari Balakrishnan, Magdalena Balazinska, Donald Carney, Ugur Çetintemel, 
    Mitch Cherniack, Christian Convey, Eduardo F. Galvez, Jon Salz, Michael Stonebraker, 
    Nesime Tatbul, Richard Tibbetts, Stanley B. Zdonik: Retrospective on Aurora. 
    VLDB J. 13(4): 370-383 (2004).
    
   
  -  Charles D. Cranor, Theodore Johnson, Oliver Spatscheck, Vladislav Shkapenyuk: 
    Gigascope: A Stream Database for Network Applications. SIGMOD Conference 2003: 
    647-651
    
   
  - Arvind Arasu, Mitch Cherniack, Eduardo F. Galvez, David Maier, Anurag Maskey, 
    Esther Ryvkina, Michael Stonebraker, Richard Tibbetts: Linear Road: A Stream 
    Data Management Benchmark. VLDB 2004.
    
   
  - Yan-Nei Law, Haixun Wang, Carlo Zaniolo: Query Languages and Data Models 
    for Database Sequences and Data Streams. VLDB 2004. 492-503.
   
  -  J. Chen, D. J. DeWitt, F. Tian, and Y. Wang. NiagaraCQ: A scalable continuous 
    query system for internet databases. In Proc. of the 2000 ACM SIGMOD Intl. 
    Conf. on Management of Data, pages 379-390, May 2000.
    
   
  -  Sam Madden, Mehul A. Shah, Joseph M. Hellerstein, Vijayshankar Raman: Continuously 
    Adaptive Continuous Queries over Streams. SIGMOD 2002, 49-61.
    
   
  -  D. Barbara. The characterization of continuous queries. Intl. Journal 
    of Cooperative Information Systems, 8(4):295-323, 1999.
    
   
  -  S. Chandrasekaran and M. Franklin. Streaming queries over streaming data. 
    In VLDB, 2002.
    
   
  -  J. Chen, D. J. DeWitt, F. Tian, and Y. Wang. NiagaraCQ: A scalable continuous 
    query system for internet databases. In SIGMOD, pages 379-390, May 
    2000.
    
   
  -  H. Jagadish, I. Mumick, and A. Silberschatz. View maintenance issues for 
    the chronicle data model. In PODS, pages 113-124, 1995.
    
   
  -  L. Liu, C. Pu, and W. Tang. Continual queries for internet scale event-driven 
    information delivery. IEEE TKDE, 11(4):583-590, 1999. 
    |  
  -  M. Sullivan. Tribeca: A stream database manager for network traffic analysis. 
    In VLDB, 1996.
    
   
  -  D. Terry, D. Goldberg, D. Nichols, and B. Oki. Continuous queries over 
    append-only databases. In SIGMOD, pages 321-330, 1992.
 
[Windows, Operators and Timestamps]
  - Arvind Arasu, Jennifer Widom: Resource Sharing in Continuous Sliding-Window 
    Aggregates. VLDB 2004.
    
   
  - Utkarsh Srivastava, Jennifer Widom: Memory-Limited Execution of Windowed 
    Stream Joins. VLDB 2004: 324-335
    
   
  - Yijian Bai, Hetal Thakkar, Chang Luo, Haixun Wang, Carlo Zaniolo: A Data 
    Stream Language and System Designed for Power and Extensibility. Proc. of 
    the ACM 15th Conference on Information and Knowledge Management (CIKM'06), 
    2006.
    
   
  - Yijian Bai et al., Optimizing Timestamp Management in Data Stream Management 
    Systems, ICDE 2007.
    
   
  - Theodore Johnson, S. Muthukrishnan, Vladislav Shkapenyuk, Oliver Spatscheck: 
    A Heartbeat Mechanism and Its Application in Gigascope. VLDB 2005: 1079-1088.
    
   
  - Utkarsh Srivastava, Jennifer Widom: Flexible Time Management in Data Stream 
    Systems. PODS 2004: 263-274
    
   
  -  Jin Li, David Maier, Kristin Tufte, Vassilis Papadimos, Peter A. Tucker: 
    Semantics and Evaluation Techniques for Window Aggregates in Data Streams. 
    SIGMOD Conference 2005: 311-322.
 
 
 [Approximate Query Answering on Data Streams]
  -  Swarup Acharya, Phillip B. Gibbons, Viswanath Poosala,Sridhar Ramaswamy: 
    Join Synopses for Approximate Query Answering. SIGMOD1999, pp.275--286. 
   
  -   Abhinandan Das, Johannes Gehrke, Mirek Riedewald: Approximate Join 
    Processing Over Data Streams.
    SIGMOD2003, pp.40--51.
    
   
  - Yan-Nei Law, and C. Zaniolo, Load Shedding for Window Joins on
    Multiple Data Streams. First International Workshop on Scalable Stream Processing 
    Systems (SSPS'07)
    April 16-20, 2007, Istanbul, Turkey.
    
   
  -  A Robust, Optimization-Based Approach for Approximate Answering of Aggregate 
    Queries. By Surajit Chaudhuri, Gautam Das, Vivek Narasayya ACM 
    SIGMOD/PODS 2001 
    
   
  -  On Computing Correlated Aggregates Over Continual Data Streams. By Johannes 
    Gehrke (Cornell Univ.), Flip Korn, and Divesh Srivastava ACM 
    SIGMOD/PODS 2001 
    
   
  -  Space-Efficient Online Computation of Quantile Summaries. By Michael Greenwald 
    and Sanjeev Khanna (Univ. of Pennsylvania)  
    ACM SIGMOD/PODS 2001 
    
   
  - Alin Dobra, Minos N. Garofalakis, Johannes Gehrke, Rajeev Rastogi: Processing 
    complex aggregate queries over data streams. SIGMOD2002, pp.61--72.
    
   
  - Arvind Arasu, Gurmeet Singh Manku. Approximate Counts and Quantiles over 
    Sliding Windows. In the ACM Symposium on Principles of Database Systems (PODS) 
    2004.
    
   
  - Brian Babcock, Chris Olston. Distributed Top-k Monitoring. In the ACM International 
    Conference on Management of Data (SIGMOD) 2003. 
    
   
  - Brian Babcock, Mayur Datar, Rajeev Motwani, LiadanO O'Callaghan. Maintaining 
    Variance and k-Medians over Data Stream Windows. In the ACM Symposium on Principles 
    of Database Systems (PODS) 2003. 
    
   
  - Brian Babcock, Mayur Datar, Rajeev Motwani: Load Shedding for Aggregation 
    Queries over Data Streams.
    ICDE2004, pp.350--361.
    
   
  -  Jeffrey Considine, Feifei Li, George Kollios, John W. Byers:Approximate 
    Aggregation Techniques for Sensor Databases. ICDE 2004.
    
   
  -  Tao Li, Qi Li, Shenghuo Zhu, Mitsunori Ogihara: A Survey on Wavelet Applications 
    in Data Mining.
    SIGKDD Explorations 2002 4(2), pp.49--68.
    
   
  - Minos N. Garofalakis, Phillip B. Gibbons: Wavelet synopses with error guarantees. 
    SIGMOD 2002, pp.476--487.
    
   
  - Anna C. Gilbert, Yannis Kotidis, S. Muthukrishnan, Martin Strauss: Surfing 
    Wavelets on Streams: One-Pass Summaries for Approximate Aggregate Queries. 
    VLDB2001, pp.79--88.
    
   
  - Kaushik Chakrabarti, Minos N. Garofalakis, Rajeev Rastogi, Kyuseok Shim: 
    Approximate Query Processing Using Wavelets. VLDB2000, pp.111--122.
   
[Scheduling, Load Shedding, and Distributed Processing]
  -  B. Babcock, S. Babu, M. Datar, and R. Motwani. Chain: Operator Scheduling 
    for Memory Minimization in Data Stream Systems To appear in Proc. of the ACM 
    Intl Conf. on Management of Data (SIGMOD 2003), June 2003
    
   
  -  Donald Carney, Ugur Çetintemel, Alex Rasin, Stanley B. Zdonik, Mitch 
    Cherniack, Michael Stonebraker: Operator Scheduling in a Data Stream Manager. 
    VLDB 2003: 838-849.
    
   
  - Brian Babcock, Mayur Datar, Rajeev Motwani: Load Shedding for Aggregation 
    Queries over Data Streams. ICDE 2004.
    
   
  - Nesime Tatbul, Ugur etintemel, Stanley B. Zdonik, Mitch Cherniack, Michael 
    Stonebraker: Load Shedding in a Data Stream Manager.VLDB2003, pp.309--320.
 
  -  Jeong-Hyon Hwang, Magdalena Balazinska, Alex Rasin, Ugur Çetintemel, 
    Michael Stonebraker, Stanley B. Zdonik: High-Availability Algorithms for Distributed 
    Stream Processing. ICDE 2005: 779-790.
    
   
  - Magdalena Balazinska, Hari Balakrishnan, Samuel Madden, Michael Stonebraker: 
    Fault-tolerance in the Borealis distributed stream processing system. SIGMOD 
    Conference 2005: 13-24.
 
[Processing of Streaming XML documents]
  - M. Altinel and M. J. Franklin. Efficient Filtering of XML Documents 
    for Selective Dissemination of Information. In Proc. Of VLDB, 2000. 
    [Xfilter] 
    
   
  -  C.-Y. Chan, P. Felber, M. Garofalakis, and R. Rastogi. Efficient 
    Filtering of XML Documents with XPath Expressions. In Proc. of ICDE, 
    2002.
    
   
  -  Z. G. Ives, A. Y. Halevy, D. S. Weld. An XML Query Engine for Network-Bound 
    Data. In VLDB Journal, 2002.
    
   
  -  J. Chen, D. J. Dewitt, F. Tian, Y. Wang. NiagaraCQ: a scalable continuous 
    query system for internet databases. In Proc. Of SIGMOD, 2002. 
    
   
  - C. Barton, P. Charles, D. Goyal, M. Raghavachari, M. Fontoura, and V. Josifovski. 
    Streaming XPath Processing with Forward and Backward Axes. In 
    Proc. of ICDE, 2003.
    
   
  - Y. Diao, M. Altinel, M. Franklin, et al. Path Sharing and Predicate Evaluation 
    for High-Performance XML Filtering.
    In TODS, pages 467516, 2003.
    
   
  - Xin Zhou, Hetal Thakkar and Carlo Zaniolo: Unifying the Processing of XML 
    Streams and Relational Data Streams, ICDE 2006.
 
Data Mining Systems
  - Tomasz Imielinski and Heikki Mannila. A database perspective on knowledge 
    discovery. Communication ACM, 39(11):58, 1996.
    
   
  - S. Sarawagi, S. Thomas, and R. Agrawal. Integrating association rule mining 
    with relational database systems: Alternatives and implications. In SIGMOD, 
    1998. 
    
   
  - T. Imielinski and A. Virmani. MSQL: a query language for database mining. 
    Data Mining and Knowledge Discovery, 3:373--408, 1999.
    
   
  - J. Han, Y. Fu, W. Wang, K. Koperski, and O. R. Zaiane. DMQL: A data mining 
    query language for relational databases. In Workshop on Research Issues on 
    Data Mining and Knowledge Discovery (DMKD), pages 27--33, Montreal, Canada, 
    June 1996.
    
   
  - R. Meo, G. Psaila, and S. Ceri. A new SQL-like operator for mining association 
    rules. In VLDB, pages 122--133, Bombay, India, 1996.
    
   
  - Marco Botta, Jean-Francois Boulicaut, Cyrille Masson, and Rosa Meo. Query 
    languages supporting descriptive rule mining: A comparative study. In Database 
    Support for Data Mining Applications, pages 24--51, 2004.
    
   
  - Carlo Zaniolo: Mining Databases and Data Streamswith Query Languages and 
    Rules: Invited Talk, Fourth International Workshop on Knowledge Discovery 
    in Inductive Databases, KDID 2005. 
    
   
  - ORACLE. Oracle Data Miner Release 10gr2: http://www.oracle.com/technology/products/bi/odm.
    
   
  - Data Mining Group (DMG). Predictive model markup language (pmml). http://sourceforge.net/projects/pmml. 
    
    
   
  - Z. Tang, J. Maclennan, and P. Kim. Building data mining solutions with OLE 
    DB for DM and XML analysis. SIGMOD Record, 34(2):8085, 2005. 
 
 
  Mining Data Bases and Data Streams
Clustering 
[Book] G. J. McLachlan and K.E. Bkasford. Mixture Models: Inference and Applications 
  to Clustering. John Wiley and Sons, 1988.
[Book] L. Kaufman and P. J. Rousseeuw. Finding Groups in Data: an Introduction 
  to Cluster Analysis. John Wiley & Sons, 1990.
[CLARANS] R. Ng and J. Han. Efficient and effective clustering method for spatial 
  data mining. VLDB'94.
[CLIQUE] R. Agrawal, J. Gehrke, D. Gunopulos, and P. Raghavan. Automatic subspace 
  clustering of high dimensional data for data mining applications. SIGMOD'98
  
  [OPTICS] M. Ankerst, M. Breunig, H.-P. Kriegel, and J. Sander. Optics: Ordering 
  points to identify the clustering structure, SIGMOD99.
  
  [Text] Beil F., Ester M., Xu X.: "Frequent Term-Based Text Clustering", 
  KDD'02
  
  [Outliers] M. M. Breunig, H.-P. Kriegel, R. Ng, J. Sander. LOF: Identifying 
  Density-Based Local Outliers. SIGMOD 2000.
  
  [DBSCAN] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. A density-based algorithm 
  for discovering clusters in large spatial databases. KDD'96.
  
  [Categorical] D. Gibson, J. Kleinberg, and P. Raghavan. Clustering categorical 
  data: An approach based on dynamic systems. VLDB98. 
[Categorical] V. Ganti, J. Gehrke, R. Ramakrishan. CACTUS Clustering Categorical 
  Data Using Summaries. KDD'99.
  
  [CURE] S. Guha, R. Rastogi, and K. Shim. Cure: An efficient clustering algorithm 
  for large databases. SIGMOD'98.
  
  [ROCK] S. Guha, R. Rastogi, and K. Shim. ROCK: A robust clustering algorithm 
  for categorical attributes. In ICDE'99, pp. 512-521, Sydney, Australia, March 
  1999.
  
  [Hierarchical] G. Karypis, E.-H. Han, and V. Kumar. CHAMELEON: A Hierarchical 
  Clustering Algorithm Using Dynamic Modeling. COMPUTER, 32(8): 68-75, 1999.
  
  [Outliers] E. Knorr and R. Ng. Algorithms for mining distance-based outliers 
  in large datasets. VLDB98.
 [DENCLUE] A. Hinneburg, D.l A. Keim: An Efficient Approach to Clustering in 
  Large Multimedia Databases with Noise. KDD98
  
  [Wavelets] G. Sheikholeslami, S. Chatterjee, and A. Zhang. WaveCluster: A multi-resolution 
  clustering approach for very large spatial databases. VLDB98.
  
  [Constraints] A. K. H. Tung, J. Han, L. V. S. Lakshmanan, and R. T. Ng. Constraint-Based 
  Clustering in Large Databases, ICDT'01. 
  
  [p-cluster] H. Wang, W. Wang, J. Yang, and P.S. Yu.  Clustering by pattern 
  similarity in large data sets,  SIGMOD 02.
  
  [STING] W.. Wang, Yang, R. Muntz, STING: A Statistical Information grid Approach 
  to Spatial Data Mining, VLDB97.
  
  [BIRCH] T. Zhang, R. Ramakrishnan, and M. Livny. BIRCH : an efficient data clustering 
  method for very large databases. SIGMOD'96.
[Data Stream Clustering]
  - Liadan O'Callaghan, Adam Meyerson, Rajeev Motwani, Nina Mishra, Sudipto 
    Guha: Streaming-Data Algorithms for High-Quality Clustering. ICDE 2002: 685+
    
   
  - Sudipto Guha, Adam Meyerson, Nina Mishra, Rajeev Motwani, Liadan O'Callaghan: 
    Clustering Data Streams: Theory and Practice. IEEE Trans. Knowl. Data Eng. 
    15(3): 515-528 (2003)
    
   
  - C. Aggarwal, J. Han, J. Wang, P. S. Yu. A Framework for Clustering Data 
    Streams,  VLDB'03 
    
   
  - C. Aggarwal, J. Han, J. Wang, and P. S. Yu. A Framework for Projected Clustering 
    of High Dimensional Data Streams, VLDB'04.
    
   
[Association Rule Mining]
 R. Agrawal, T. Imielinski, and A. Swami. Mining association rules between 
  sets of items in large databases. SIGMOD'93.
  
  R. Agrawal and R. Srikant. Fast algorithms for mining association rules. VLDB'94
J. S. Park, M. S. Chen, and P. S. Yu. An effective hash-based algorithm for 
  mining association rules. SIGMOD'95.
A. Savasere, E. Omiecinski, and S. Navathe. Mining for strong negative associations 
  in a large database of customer transactions. ICDE'98.
  
  D. Tsur, J. D. Ullman, S. Abitboul, C. Clifton, R. Motwani, and S. Nestorov. 
  Query flocks: A generalization of association-rule mining. SIGMOD'98.
H. Mannila, H Toivonen, and A. I. Verkamo. Discovery of frequent episodes in 
  event sequences. DAMI:97.
  
  M. Zaki. SPADE: An Efficient Algorithm for Mining Frequent Sequences. Machine 
  Learning:01.
  
  (Max-pattern) R. J. Bayardo. Efficiently mining long patterns from databases. 
  SIGMOD'98. 
  
  (Closed-pattern) N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal. Discovering 
  frequent closed itemsets for association rules. ICDT'99.
(FP-Growth) J. Han, J. Pei, and Y. Yin. Mining frequent patterns without candidate 
  generation. SIGMOD 00. 
J. Liu, Y. Pan, K. Wang, and J. Han. Mining Frequent Item Sets by Opportunistic 
  Projection. KDD'02
Gösta Grahne, Jianfei Zhu: Efficiently Using Prefix-trees in Mining Frequent 
  Itemsets. FIMI 2003
Zaki and Hsiao. CHARM: An Efficient Algorithm for Closed Itemset Mining, SDM'02. 
R. Srikant and R. Agrawal. Mining generalized association rules. VLDB'95.
  
  J. Han and Y. Fu. Discovery of multiple-level association rules from large databases. 
  VLDB'95.
B. Lent, A. Swami, and J. Widom. Clustering association rules. ICDE'97.
M. Klemettinen, H. Mannila, P. Ronkainen, H. Toivonen, and A. I. Verkamo. Finding 
  interesting rules from large sets of discovered association rules. CIKM'94.
  
  S. Brin, R. Motwani, and C. Silverstein. Beyond market basket: Generalizing 
  association rules to correlations. SIGMOD'97.
  
  C. Silverstein, S. Brin, R. Motwani, and J. Ullman. Scalable techniques for 
  mining causal structures. VLDB'98.
  
  P.-N. Tan, V. Kumar, and J. Srivastava. Selecting the Right Interestingness 
  Measure for Association Patterns. KDD'02.
  
  E. Omiecinski. Alternative Interest Measures for Mining Associations. TKDE03.
  
  Y. K. Lee, W.Y. Kim, Y. D. Cai, and J. Han. CoMine: Efficient Mining of Correlated 
  Patterns. ICDM03.
  
   [Association on Data Streams]
  - G. Manku, R. Motwani.  Approximate Frequency Counts over Data Streams, 
    VLDB02 
   
  - Richard M. Karp, Scott Shenker, Christos H. Papadimitriou: A simple algorithm 
    for finding frequent elements in streams and bags. ACM Trans. Database Syst. 
    28: 51-55 (2003)
    
   
  - C. Giannella, J. Han, J. Pei, X. Yan and P.S. Yu. Mining frequent patterns 
    in data streams at multiple time granularities, Kargupta, et al. (eds.), Next 
    Generation Data Mining04
    
   
  - Ahmed Metwally, Divyakant Agrawal, Amr El Abbadi: Efficient Computation 
    of Frequent and Top-k Elements in Data Streams. ICDT 2005: 398-412
   
[Classification]
  - T.-S. Lim, W.-Y. Loh, and Y.-S. Shih. A comparison of prediction accuracy, 
    complexity, and training time of thirty-three old and new classification algorithms. 
    Machine Learning, 2000. 
    
   
  - J. Magidson. The Chaid approach to segmentation modeling: Chi-squared automatic 
    interaction detection. In R. P. Bagozzi, editor, Advanced Methods of Marketing 
    Research, Blackwell Business, 1994.
    
   
  - M. Mehta, R. Agrawal, and J. Rissanen. SLIQ : A fast scalable classifier 
    for data mining. EDBT'96.
    
   
  - J. R. Quinlan. Bagging, boosting, and c4.5. AAAI'96.
    
   
  - R. Rastogi and K. Shim. Public: A decision tree classifier that integrates 
    building and pruning. VLDB98.
    
   
  - J. Shafer, R. Agrawal, and M. Mehta. SPRINT : A scalable parallel classifier 
    for data mining. VLDB96.
    
   
  - H. Yu, J. Yang, and J. Han. Classifying large data sets using SVM with hierarchical 
    clusters. KDD'03.
    
   
  - J. Gehrke, R. Ramakrishnan, and V. Ganti. Rainforest: A framework for fast 
    decision tree construction of large datasets. VLDB98.
    
   
  - X. Yin and J. Han. CPAR: Classification based on predictive association 
    rules. SDM'03..
    
   
  - L. Breiman, J. Friedman, R. Olshen, and C. Stone. Classification and Regression 
    Trees. Wadsworth International Group, 1984.
    
   
  - Haixun Wang, Carlo Zaniolo: CMP: A Fast Decision Tree Classifier Using Multivariate 
    Predictions. ICDE 2000: 449-460.
    
    [Classification on Data Streams]
   
  - P. Domingos and G. Hulten, Mining high-speed data streams, KDD'00 
    
    
   
  - C. C. Aggarwal, J. Han, J. Wang and P. S. Yu. On-Demand Classification of 
    Evolving Data Streams, KDD'04
    
   
  - Fang Chu, Carlo Zaniolo: Fast and Light Boosting for Adaptive Mining of 
    Data Streams. PAKDD 2004: 282-292.
    
   
  - Fang Chu, Yizhou Wang, Carlo Zaniolo: An Adaptive Learning Approach for 
    Noisy Data Streams. ICDM 2004: 351-354.
    
   
  - C. C. Aggarwal, J. Han, J. Wang and P. S. Yu. On-Demand Classification of 
    Evolving Data Streams, KDD'04
    
   
  - Yan-Nei Law, Carlo Zaniolo: An Adaptive Nearest Neighbor Classification 
    Algorithm for Data Streams. PKDD 2005: 108-120.
   
[Time Series]
C. Chatfield. The Analysis of Time Series: An Introduction, 3rd ed. Chapman 
  & Hall, 1984.
R.H. Shumway & D.S. Stoffer. Time Series Analysis and Its Applications: 
  With R Examples (2nd ed.), Springer Texts in Statistics, 2006. http://www.stat.pitt.edu/stoffer/tsa2/index.html
StatSoft. Electronic Textbook. www.statsoft.com/textbook/stathome.html
R. Agrawal, C. Faloutsos, and A. Swami. Efficient similarity search in sequence 
  databases. FODO93 (Foundations of Data Organization and Algorithms).
  
  R. Agrawal, K.-I. Lin, H.S. Sawhney, and K. Shim. Fast similarity search in 
  the presence of noise, scaling, and translation in time-series databases. VLDB'95.
  
  R. Agrawal, G. Psaila, E. L. Wimmers, and M. Zait. Querying shapes of histories. 
  VLDB'95.
  
  C. Faloutsos, M. Ranganathan, and Y. Manolopoulos. Fast subsequence matching 
  in time-series databases. SIGMOD'94.
  
  Carlo Zaniolo,Stefano Ceri,Christos Faloutsos, Richard T. Snodgrass,VS Subrahmanian, 
  Roberto Zicari. Advanced Database Systems (Chater 12), Morgan-Kaufmann, 1997.
Nasser Yazdani, Z. Meral Özsoyoglu: Sequence Matching of Images. SSDBM 
  1996: 53-62
Y. Moon, K. Whang, W. Loh. Duality Based Subsequence Matching in Time-Series 
  Databases, ICDE02
  
  B.-K. Yi, H. V. Jagadish, and C. Faloutsos. Efficient retrieval of similar time 
  sequences under time warping. ICDE'98.
  
  B.-K. Yi, N. Sidiropoulos, T. Johnson, H. V. Jagadish, C. Faloutsos, and A. 
  Biliris. Online data mining for co-evolving time sequences. ICDE'00.
  
  Dennis Shasha and Yunyue Zhu. High Performance Discovery in Time Series: Techniques 
  and Case Studies, SPRINGER, 2004
  
  L. R. Rabiner. A tutorial on hidden markov models and selected applications 
  in speech recognition. Proc. IEEE, 77:257--286, 1989.
R.Durbin, S.Eddy, A.Krogh and G.Mitchison. Biological Sequence Analysis: Probability 
  Models of Proteins and Nucleic Acids. Cambridge University Press, 1998.