Operating Systems Principles
Processes, Execution and State

Mark Kampe

(markk@cs.ucla.edu)

4/3/2016

Processes, Execution, and State

3A. What is a Process?

3B. Implementing Processes

3C. Asynchronous Exceptions and Events
3D. User-Mode Programs and Exceptions

What is a Process?

¢ an executing instance of a program

— how is this different from a program?
e avirtual private computer

— what does a virtual computer look like?

— how is a process different from a virtual machine?
e aprocess is an object

— characterized by its properties (state)

— characterized by its operations

What is “state”?

¢ the primary dictionary definition of “state” is
— “a mode or condition of being”
—an object may have a wide range of possible states
« all persistent objects have “state”
— distinguishing it from other objects
— characterizing object's current condition
¢ contents of state depends on object
— complex operations often mean complex state
— we can save/restore the aggregate/total state
—weca

n talk of a subset (e.g. scheduling state)

Program vs Process Address Space

ELF header By
targetISA section 1 header section 2 header section 3 header
#1oad sections :V":' . ;0‘*@ type: data | | type: sym
#info sections oadadr: Oxxx | | loadadr: Oxoc | |length: ###
length: HH# length: i
q initialized
compiled symbol
data
code table
values

| 0x00000000

| 0x0100000

‘ 0x0110000

shared code

hared lib3

0x0120000

private data

private stack

OXFFFFFFFF |

Address Space: Code Segments

¢ load module (output of linkage editor)
— all external references have been resolved
— all modules combined into a few segments
—includes multiple segments (text, data, BSS)
¢ code must be loaded into memory
— a virtual code segment must be created
— code must be read in from the load module
— map segment into virtual address space
¢ code segments are read/only and sharable
— many processes can use the same code segments

cution, and State

Address Space: Data Segments

» data too must be initialized in address space
— process data segment must be created
— initial contents must be copied from load module
— BSS: segments to be initialized to all zeroes
— map segment into virtual address space

¢ data segments
— are read/write, and process private

— program can grow or shrink it (with sbrk syscall)

4/3/2016

Address Space: Stack Segment

* size of stack depends on program activities
— grows larger as calls nest more deeply
— amount of local storage allocated by each procedure
— after calls return, their stack frames can be recycled
¢ OS manages the process's stack segment
— stack segment created at same time as data segment
— some allocate fixed sized stack at program load time
— some dynamically extend stack as program needs it
¢ Stack segments are read/write and process private

Address Space: Shared Libraries

static libraries are added to load module
— each load module has its own copy of each library
— program must be re-linked to get new version

make each library a sharable code segment

— one in-memory copy, shared by all processes

— keep the library separate from the load modules
— operating system loads library along with program
reduced memory use, faster program loads
 easier and better library upgrades

xecution, and State

Other Process State

registers
— general registers
— program counter, processor status
— stack pointer, frame pointer
* processes own OS resources
— open files, current working directory, locks
* processes have OS-related state
— Process ID, User ID, Group ID, scheduling priority
— registered signal handlers, queued events, ...

xecution, and State

Process Operations: fork

* parent and child are identical:
— data and stack segments are copied
— all the same files are open
¢ code sample:
int rc = fork();
if (rc<0){
fprintf(stderr, “Fork failed\n”);
}else if (rc==0) {
fprintf(stderr, “Child\n”);
}else
fprintf(stderr, “Fork succeeded, child pid = %d\n”, rc);

xecution, and State

Process Operations: wait

¢ await termination of a child process
— collect exit status
* code sample:
int rc = waitpid(pid, &status, 0);
if (rc==0) {
fprintf(stderr, “process %d exited rc=%d\n”, pid, status);
}

Process Operations: exec

* |oad new program, pass parameters
— address space is completely recreated
—all open files remain open
— available in many polymorphisms

¢ code sample:

char *myargs|[3];

myargs[0] = “wc”;

myargs[1] = “myfile”;

myargs[2] = NULL;

int rc = execvp(myargs[0], myargs);

xecution, and State

4/3/2016

Variations on Process Creation

* tabula rasa —a blank slate
—a new process with minimal resources
— it must set up all resources for itself
e run—fork + exec
— create new process to run a specified command
¢ a cloning fork is a more expensive operation
— much data and resources to be copied
— convenient for setting up pipelines

— allows inheritance of exclusive use devices

xecution, and State

Representing a Process

all (not just OS) objects have descriptors

— the identity of the object

—the current state of the object

— references to other associated objects

¢ Process state is in multiple places

— parameters and object references in a descriptor
— app execution state is on the stack, in registers

— each Linux process has a supervisor-mode stack
* to retain the state of in-progress system calls
* to save the state of an interrupt preempted process

xecution, and State

Resident and non-Resident State

Resident Process Table Non-resident Process State

PID: 1
8TS: in mem
PID: 2

STS: on disk

PID: 3

S8TS: swapoul >

in memory on disk

(resident process descriptor)

* state that could be needed at any time
¢ information needed to schedule process
— run-state, priority, statistics
— data needed to signal or awaken process
* identification information
— process ID, user ID, group ID, parent ID
e communication and synchronization resources
— semaphores, pending signals, mail-boxes
* pointer to non-resident state

xecution, and State

(non-resident process state)

information needed only when process runs
— can swap out to free memory for other processes
execution state

— supervisor mode stack

—including: saved register values, PC, PS

pointers to resources used when running

— current working directory, open file descriptors
pointers to text, data and stack segments

— used to reconstruct the address space

Execution, and State

4/3/2016

Creating a new process

allocate/initialize resident process description

allocate/initialize non-resident description

duplicate parent resource references (e.g. fds)
¢ create a virtual address space
— allocate memory for code, data and stack
—load/copy program code and data
— copy/initialize a stack segment
— set up initial registers (PC, PS, SP)
e return from supervisor mode into new process

xecution, and State

Limited Direct Execution

e CPU directly executes all application code
— punctuated by occasional traps (for system calls)
— with occasional timer interrupts (for time sharing)
* Maximizing direct execution is always the goal
— for Linux user mode processes
— for OS emulation (e.g. Windows on Linux)
— for virtual machines
¢ Enter the OS as seldom as possible
— get back to the application as quickly as possible

xecution, and State

Asynchronous Exceptions

* some errors are routine
— end of file, arithmetic overflow, conversion error
— we should check for these after each operation
* some errors occur unpredictably
— segmentation fault (e.g. dereferencing NULL)
— user abort (C), hang-up, power-failure
* these must raise asynchronous exceptions
— some languages support try/catch operations
— computers support traps
— operating systems also use these for system calls

xecution, and State

System Call Trap Gates
Application Program

[instr; instr; instr; trap; instr; instr; |
A user mode

supervisor mode

17 PSIPC_|e—

TRAP vector table

return to
user mode

1stlevel trap handler

system call dispatch
table

xecution, and State

(Trap Handling)

¢ hardware trap handling
— trap cause as index into trap vector table for PC/PS
— load new processor status word, switch to supv mode
— push PC/PS of program that cuased trap onto stack
— load PC (w/addr of 1st level handler)
* software trap handling
— 1stlevel handler pushes all other registers
— 1t level handler gathers info, selects 2" level handler
— 2" |evel handler actually deals with the problem

* handle the event, kill the process, return ...

xecution, and State

Using Traps for System Calls

* reserve one illegal instruction for system calls

— most computers specifically define such instructions
define system call linkage conventions

— call: rO = system call number, r1 points to arguments

— return: rO = return code, cc indicates success/failure
¢ prepare arguments for the desired system call
* execute the designated system call instruction
¢ OS recognizes & performs requested operation
* returns to instruction after the system call

Execution, and State

Stacking and unstacking a System Call

User-mode Stack Supervisor-mode Stack

user mode
PC & PS
saved

user mode
registers

parameters
to system
call handler

direction
of growth

4/3/2016

(Returning to User-Mode)

* return is opposite of interrupt/trap entry
—2nd level handler returns to 1st level handler
— 1st level handler restores all registers from stack
— use privileged return instruction to restore PC/PS
— resume user-mode execution at next instruction
¢ saved registers can be changed before return
— change stacked user r0 to reflect return code
— change stacked user PS to reflect success/failure

Asynchronous Events

¢ some things are worth waiting for
— when | read(), | want to wait for the data
¢ sometimes waiting doesn’t make sense
— I want to do something else while waiting
— | have multiple operations outstanding
— some events demand very prompt attention
* we need event completion call-backs
— this is a common programming paradigm
— computers support interrupts (similar to traps)
— commonly associated with 1/0 devices and timers

xecution, and State

User-Mode Signal Handling

¢ OS defines numerous types of signals

— exceptions, operator actions, communication
¢ processes can control their handling

—ignore this signal (pretend it never happened)

— designate a handler for this signal

— default action (typically kill or coredump process)
* analogous to hardware traps/interrupts

— but implemented by the operating system

— delivered to user mode processes

xecution, and State

Signals and Signal Handling

* when an asynchronous exception occurs
— the system invokes a specified exception handler
¢ invocation looks like a procedure call
— save state of interrupted computation
— exception handler can do what ever is necessary
— handler can return, resume interrupted computation
¢ more complex than a procedure call and return
— must also save/restore condition codes & volatile regs
— may abort rather than return

Signals: sample code

int fault_expected, fault_happened;
void handler(int sig) {

if (!fault_expected) exit(-1); /* if not expected, die */

else fault_happened =1; /* if expected, note it happened */
}
signal(SIGHUP, SIGIGNORE); /* ignore hang-up signals */
signal(SIGSEGV, &handler); /* handle segmentation faults */

fault_happened = 0; fault_expected = 1;
/* code that might cause a segmentation fault */
fault_expected = 0;

Stacking a signal delivery
[pt:parometers_|

pO: return address

stack

exception)

signal handler sees
a completely

standard appearing
stack frame.

Processes, Execution, and State

stack frame
(pushed by signal)

4/3/2016

assignments

¢ reading for the next lecture
— Arpaci ch 7 ... CPU Scheduling
— Arpaci ch 8 ... Multi-Level Feedback
— Arpaci ch 10 ... Multi-CPU Scheduling (skim)jjjjkkkk
— real-time scheduling

Quiz 4 is due before the lecture!

Start project 1 before lab sessionkk

Processes, Execution, and State 32

Supplementary Slides

Indirect binding to shared libraries

redirection table @

jump foo —

call foo

code segment
(read only) shared library
(read only, at well known
location)

Limitations of Shared Libraries

not all modules will work in a shared library

— they cannot define/include static data storage

they are read into program memory

— whether they are actually needed or not

called routines must be known at compile-time
— only the fetching of the code is delayed 'til run-time
— symbols known at compile time, bound at link time
Dynamically Loadable Libraries are more general
— they eliminate all of these limitations ... at a price

Loading and Binding w/DLLs

code segment
(read only)

new code

call foo —

Procedure Linkage Table
(writeable)

—> Joapféamodtt—===7

(run-time binding to DLLs)

¢ |load module includes a Procedure Linkage Table
— addresses for routines in DLL resolve to entries in PLT
— each PLT entry contains a system call to run-time
loader (asking it to load the corresponding routine)
¢ first time a routine is called, we call run-time
loader
— which finds, loads, and initializes the desired routine
— changes the PLT entry to be a jump to loaded routine
— then jumps to the newly loaded routine

¢ subsequent calls through that PLT entry go
directly

4/3/2016

Shared Libraries vs. DLLs

both allow code sharing and run-time binding

shared libraries

— do not require a special linkage editor

— shared objects obtained at program load time

Dynamically Loadable Libraries

— require smarter linkage editor, run-time loader

— modules are not loaded until they are needed
 automatically when needed, or manually by program

— complex, per-routine, initialization can be performed

* e.g. allocation of private data area for persistent local
variables

Dynamic Loading

¢ DLLs are not merely “better” shared libraries
— libraries are loaded to satisfy static external references
— DLLs are designed for dynamic binding
Typical DLL usage scenario
— identify a needed module (e.g. device driver)
— call RTL to load the module, get back a descriptor
— use descriptor to call initialization entry-point

— initialization function registers all other entry points
— module is used as needed

— later we can unregister, free resources, and unload

