
4/3/2016

1

Operating Systems Principles

Processes, Execution and State

Mark Kampe

(markk@cs.ucla.edu)

Processes, Execution, and State

3A. What is a Process?

3B. Implementing Processes

3C. Asynchronous Exceptions and Events

3D. User-Mode Programs and Exceptions

2Processes, Execution, and State

What is a Process?

• an executing instance of a program

– how is this different from a program?

• a virtual private computer

– what does a virtual computer look like?

– how is a process different from a virtual machine?

• a process is an object

– characterized by its properties (state)

– characterized by its operations

Processes, Execution, and State 3

What is “state”?

• the primary dictionary definition of “state” is

– “a mode or condition of being”

– an object may have a wide range of possible states

• all persistent objects have “state”

– distinguishing it from other objects

– characterizing object's current condition

• contents of state depends on object

– complex operations often mean complex state

– we can save/restore the aggregate/total state

– we can talk of a subset (e.g. scheduling state)
Processes, Execution, and State 4

Program vs Process Address Space

Processes, Execution, and State 5

section 1 header

type: code

load adr: 0xxx

length: ###

section 3 header

type: sym

length: ###

compiled

code

initialized

data

values

symbol

table

ELF header

target ISA

load sections

info sections

section 2 header

type: data

load adr: 0xxx

length: ###

0x00000000

0xFFFFFFFF

shared code private data

private stack

shared lib1 shared lib2

shared lib3

0x0100000 0x0110000

0x0120000

Address Space: Code Segments

• load module (output of linkage editor)

– all external references have been resolved

– all modules combined into a few segments

– includes multiple segments (text, data, BSS)

• code must be loaded into memory

– a virtual code segment must be created

– code must be read in from the load module

– map segment into virtual address space

• code segments are read/only and sharable

– many processes can use the same code segments

Processes, Execution, and State 6

4/3/2016

2

Address Space: Data Segments

• data too must be initialized in address space

– process data segment must be created

– initial contents must be copied from load module

– BSS: segments to be initialized to all zeroes

– map segment into virtual address space

• data segments

– are read/write, and process private

– program can grow or shrink it (with sbrk syscall)

Processes, Execution, and State 7

Address Space: Stack Segment

• size of stack depends on program activities

– grows larger as calls nest more deeply

– amount of local storage allocated by each procedure

– after calls return, their stack frames can be recycled

• OS manages the process's stack segment

– stack segment created at same time as data segment

– some allocate fixed sized stack at program load time

– some dynamically extend stack as program needs it

• Stack segments are read/write and process private

Processes, Execution, and State 8

Address Space: Shared Libraries

• static libraries are added to load module

– each load module has its own copy of each library

– program must be re-linked to get new version

• make each library a sharable code segment

– one in-memory copy, shared by all processes

– keep the library separate from the load modules

– operating system loads library along with program

• reduced memory use, faster program loads

• easier and better library upgrades

Processes, Execution, and State 9

Other Process State

• registers

– general registers

– program counter, processor status

– stack pointer, frame pointer

• processes own OS resources

– open files, current working directory, locks

• processes have OS-related state

– Process ID, User ID, Group ID, scheduling priority

– registered signal handlers, queued events, …

Processes, Execution, and State 10

Process Operations: fork

• parent and child are identical:

– data and stack segments are copied

– all the same files are open

• code sample:
int rc = fork();

if (rc < 0) {

fprintf(stderr, “Fork failed\n”);

} else if (rc == 0) {

fprintf(stderr, “Child\n”);

} else

fprintf(stderr, “Fork succeeded, child pid = %d\n”, rc);

Processes, Execution, and State 11

Process Operations: wait

• await termination of a child process

– collect exit status

• code sample:

int rc = waitpid(pid, &status, 0);

if (rc == 0) {

fprintf(stderr, “process %d exited rc=%d\n”, pid, status);

}

Processes, Execution, and State 12

4/3/2016

3

Process Operations: exec

• load new program, pass parameters

– address space is completely recreated

– all open files remain open

– available in many polymorphisms

• code sample:

char *myargs[3];

myargs[0] = “wc”;

myargs[1] = “myfile”;

myargs[2] = NULL;

int rc = execvp(myargs[0], myargs);

Processes, Execution, and State 13

Variations on Process Creation

• tabula rasa – a blank slate

– a new process with minimal resources

– it must set up all resources for itself

• run – fork + exec

– create new process to run a specified command

• a cloning fork is a more expensive operation

– much data and resources to be copied

– convenient for setting up pipelines

– allows inheritance of exclusive use devices

Processes, Execution, and State 14

Representing a Process

• all (not just OS) objects have descriptors

– the identity of the object

– the current state of the object

– references to other associated objects

• Process state is in multiple places

– parameters and object references in a descriptor

– app execution state is on the stack, in registers

– each Linux process has a supervisor-mode stack

• to retain the state of in-progress system calls

• to save the state of an interrupt preempted process

Processes, Execution, and State 15

Resident and non-Resident State

Processes, Execution, and State 16

Resident Process Table

PID: 1
STS: in mem

…

PID: 2
STS: on disk

…

PID: 3
STS: swapout

…

Non-resident Process State

in memory on disk

(resident process descriptor)

• state that could be needed at any time

• information needed to schedule process

– run-state, priority, statistics

– data needed to signal or awaken process

• identification information

– process ID, user ID, group ID, parent ID

• communication and synchronization resources

– semaphores, pending signals, mail-boxes

• pointer to non-resident state

Processes, Execution, and State 17

(non-resident process state)

• information needed only when process runs

– can swap out to free memory for other processes

• execution state

– supervisor mode stack

– including: saved register values, PC, PS

• pointers to resources used when running

– current working directory, open file descriptors

• pointers to text, data and stack segments

– used to reconstruct the address space

Processes, Execution, and State 18

4/3/2016

4

Creating a new process

• allocate/initialize resident process description

• allocate/initialize non-resident description

• duplicate parent resource references (e.g. fds)

• create a virtual address space

– allocate memory for code, data and stack

– load/copy program code and data

– copy/initialize a stack segment

– set up initial registers (PC, PS, SP)

• return from supervisor mode into new process

Processes, Execution, and State 19

Limited Direct Execution

• CPU directly executes all application code

– punctuated by occasional traps (for system calls)

– with occasional timer interrupts (for time sharing)

• Maximizing direct execution is always the goal

– for Linux user mode processes

– for OS emulation (e.g. Windows on Linux)

– for virtual machines

• Enter the OS as seldom as possible

– get back to the application as quickly as possible

Processes, Execution, and State 20

Asynchronous Exceptions

• some errors are routine

– end of file, arithmetic overflow, conversion error

– we should check for these after each operation

• some errors occur unpredictably

– segmentation fault (e.g. dereferencing NULL)

– user abort (^C), hang-up, power-failure

• these must raise asynchronous exceptions

– some languages support try/catch operations

– computers support traps

– operating systems also use these for system calls

Processes, Execution, and State 21

System Call Trap Gates

Processes, Execution, and State 22

1st level trap handler

2nd level handler
(system service

implmementation)

return to
user mode

Application Program

user mode
supervisor modePS/PC

TRAP vector table

PS/PC
PS/PC
PS/PC

instr ; instr ; instr ; trap ; instr ; instr ;

system call dispatch
table

(Trap Handling)

• hardware trap handling

– trap cause as index into trap vector table for PC/PS

– load new processor status word, switch to supv mode

– push PC/PS of program that cuased trap onto stack

– load PC (w/addr of 1st level handler)

• software trap handling

– 1st level handler pushes all other registers

– 1st level handler gathers info, selects 2nd level handler

– 2nd level handler actually deals with the problem

• handle the event, kill the process, return ...

Processes, Execution, and State 23

Using Traps for System Calls

• reserve one illegal instruction for system calls

– most computers specifically define such instructions

• define system call linkage conventions

– call: r0 = system call number, r1 points to arguments

– return: r0 = return code, cc indicates success/failure

• prepare arguments for the desired system call

• execute the designated system call instruction

• OS recognizes & performs requested operation

• returns to instruction after the system call

Processes, Execution, and State 24

4/3/2016

5

Stacking and unstacking a System Call

Processes, Execution, and State 25

stack frames
from

application
computation

User-mode Stack Supervisor-mode Stack

direction
of growth

user mode
PC & PS

saved
user mode
registers

parameters
to system

call handler

return PC

system call
handler

stack frame

resumed
computation

(Returning to User-Mode)

• return is opposite of interrupt/trap entry

– 2nd level handler returns to 1st level handler

– 1st level handler restores all registers from stack

– use privileged return instruction to restore PC/PS

– resume user-mode execution at next instruction

• saved registers can be changed before return

– change stacked user r0 to reflect return code

– change stacked user PS to reflect success/failure

Processes, Execution, and State 26

Asynchronous Events

• some things are worth waiting for

– when I read(), I want to wait for the data

• sometimes waiting doesn’t make sense

– I want to do something else while waiting

– I have multiple operations outstanding

– some events demand very prompt attention

• we need event completion call-backs

– this is a common programming paradigm

– computers support interrupts (similar to traps)

– commonly associated with I/O devices and timers

Processes, Execution, and State 27

User-Mode Signal Handling

• OS defines numerous types of signals

– exceptions, operator actions, communication

• processes can control their handling

– ignore this signal (pretend it never happened)

– designate a handler for this signal

– default action (typically kill or coredump process)

• analogous to hardware traps/interrupts

– but implemented by the operating system

– delivered to user mode processes

Processes, Execution, and State 28

Signals and Signal Handling

• when an asynchronous exception occurs

– the system invokes a specified exception handler

• invocation looks like a procedure call

– save state of interrupted computation

– exception handler can do what ever is necessary

– handler can return, resume interrupted computation

• more complex than a procedure call and return

– must also save/restore condition codes & volatile regs

– may abort rather than return

Processes, Execution, and State 29

Signals: sample code

Processes, Execution, and State 30

int fault_expected, fault_happened;

void handler(int sig) {

if (!fault_expected) exit(-1); /* if not expected, die */

else fault_happened = 1; /* if expected, note it happened */

}

signal(SIGHUP, SIGIGNORE); /* ignore hang-up signals */

signal(SIGSEGV, &handler); /* handle segmentation faults */

...

fault_happened = 0; fault_expected = 1;

... /* code that might cause a segmentation fault */

fault_expected = 0;

4/3/2016

6

Stacking a signal delivery

Processes, Execution, and State 31

p1: parameters

p1: saved registers

p1: local variables

p1: computation

p0: return address

PC/PS

(at time of exception)

handler: saved registers

handler: local variables

stack

(at time of

exception)

stack frame

(pushed by signal)
handler: parameters

addr of signal unstacker

signal handler sees

a completely

standard appearing

stack frame.

assignments

• reading for the next lecture

– Arpaci ch 7 … CPU Scheduling

– Arpaci ch 8 … Multi-Level Feedback

– Arpaci ch 10 … Multi-CPU Scheduling (skim)jjjjkkkk

– real-time scheduling

Quiz 4 is due before the lecture!

Start project 1 before lab sessionkk

Processes, Execution, and State 32

Supplementary Slides

Indirect binding to shared libraries

code segment

(read only)

…

call foo

…

shared library

(read only, at well known

location)

foo: …

...

jump foo
redirection table D1

Limitations of Shared Libraries

• not all modules will work in a shared library

– they cannot define/include static data storage

• they are read into program memory

– whether they are actually needed or not

• called routines must be known at compile-time

– only the fetching of the code is delayed 'til run-time

– symbols known at compile time, bound at link time

• Dynamically Loadable Libraries are more general

– they eliminate all of these limitations ... at a price

Loading and Binding w/DLLs

code segment

(read only)

Procedure Linkage Table

(writeable)

…

call foo

…

run time

loader

new code

segment

foo: …

...

jump fooload foo.dll

4/3/2016

7

(run-time binding to DLLs)

• load module includes a Procedure Linkage Table

– addresses for routines in DLL resolve to entries in PLT

– each PLT entry contains a system call to run-time
loader (asking it to load the corresponding routine)

• first time a routine is called, we call run-time
loader

– which finds, loads, and initializes the desired routine

– changes the PLT entry to be a jump to loaded routine

– then jumps to the newly loaded routine

• subsequent calls through that PLT entry go
directly

Shared Libraries vs. DLLs

• both allow code sharing and run-time binding

• shared libraries

– do not require a special linkage editor

– shared objects obtained at program load time

• Dynamically Loadable Libraries

– require smarter linkage editor, run-time loader

– modules are not loaded until they are needed

• automatically when needed, or manually by program

– complex, per-routine, initialization can be performed

• e.g. allocation of private data area for persistent local
variables

E1

Dynamic Loading

• DLLs are not merely “better” shared libraries

– libraries are loaded to satisfy static external references

– DLLs are designed for dynamic binding

• Typical DLL usage scenario

– identify a needed module (e.g. device driver)

– call RTL to load the module, get back a descriptor

– use descriptor to call initialization entry-point

– initialization function registers all other entry points

– module is used as needed

– later we can unregister, free resources, and unload

