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What is a Process?

• an executing instance of a program

– how is this different from a program?

• a virtual private computer

– what does a virtual computer look like?

– how is a process different from a virtual machine?

• a process is an object

– characterized by its properties (state)

– characterized by its operations
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What is “state”?

• the primary dictionary definition of “state” is

– “a mode or condition of being”

– an object may have a wide range of possible states

• all persistent objects have “state”

– distinguishing it from other objects

– characterizing object's current condition

• contents of state depends on object

– complex operations often mean complex state

– we can save/restore the aggregate/total state

– we can talk of a subset (e.g. scheduling state)
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Program vs Process Address Space
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section 1 header

type: code

load adr: 0xxx

length: ###

section 3 header

type: sym

length: ###

compiled

code

initialized

data

values

symbol

table

ELF header

target ISA

# load sections

# info sections

section 2 header

type: data

load adr: 0xxx

length: ###

0x00000000

0xFFFFFFFF

shared code private data

private stack

shared lib1 shared lib2

shared lib3

0x0100000 0x0110000

0x0120000

Address Space: Code Segments

• load module (output of linkage editor)

– all external references have been resolved

– all modules combined into a few segments

– includes multiple segments (text, data, BSS)

• code must be loaded into memory

– a virtual code segment must be created

– code must be read in from the load module

– map segment into virtual address space

• code segments are read/only and sharable

– many processes can use the same code segments
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Address Space: Data Segments

• data too must be initialized in address space

– process data segment must be created

– initial contents must be copied from load module 

– BSS: segments to be initialized to all zeroes

– map segment into virtual address space

• data segments

– are read/write, and process private

– program can grow or shrink it (with sbrk syscall)
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Address Space: Stack Segment

• size of stack depends on program activities

– grows larger as calls nest more deeply

– amount of local storage allocated by each procedure

– after calls return, their stack frames can be recycled

• OS manages the process's stack segment

– stack segment created at same time as data segment

– some allocate fixed sized stack at program load time

– some dynamically extend stack as program needs it

• Stack segments are read/write and process private
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Address Space: Shared Libraries

• static libraries are added to load module

– each load module has its own copy of each library

– program must be re-linked to get new version

• make each library a sharable code segment

– one in-memory copy, shared by all processes 

– keep the library separate from the load modules

– operating system loads library along with program

• reduced memory use, faster program loads

• easier and better library upgrades
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Other Process State

• registers

– general registers

– program counter, processor status

– stack pointer, frame pointer

• processes own OS resources

– open files, current working directory, locks

• processes have OS-related state

– Process ID, User ID, Group ID, scheduling priority

– registered signal handlers, queued events, …
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Process Operations: fork

• parent and child are identical:

– data and stack segments are copied

– all the same files are open

• code sample:
int rc = fork();

if (rc < 0) {

fprintf(stderr, “Fork failed\n”);

} else if (rc == 0) {

fprintf(stderr, “Child\n”);

} else

fprintf(stderr, “Fork succeeded, child pid = %d\n”, rc);
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Process Operations: wait

• await termination of a child process

– collect exit status

• code sample:

int rc = waitpid(pid, &status, 0);

if (rc == 0) {

fprintf(stderr, “process %d exited rc=%d\n”, pid, status);

}
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Process Operations: exec

• load new program, pass parameters

– address space is completely recreated

– all open files remain open

– available in many polymorphisms

• code sample:

char *myargs[3];

myargs[0] = “wc”;

myargs[1] = “myfile”;

myargs[2] = NULL;

int rc = execvp(myargs[0], myargs);
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Variations on Process Creation

• tabula rasa – a blank slate

– a new process with minimal resources

– it must set up all resources for itself

• run – fork + exec

– create new process to run a specified command

• a cloning fork is a more expensive operation

– much data and resources to be copied

– convenient for setting up pipelines

– allows inheritance of exclusive use devices
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Representing a Process

• all (not just OS) objects have descriptors

– the identity of the object

– the current state of the object

– references to other associated objects

• Process state is in multiple places

– parameters and object references in a descriptor

– app execution state is on the stack, in registers

– each Linux process has a supervisor-mode stack

• to retain the state of in-progress system calls

• to save the state of an interrupt preempted process
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Resident and non-Resident State
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Resident Process Table

PID: 1
STS: in mem

…

PID: 2
STS: on disk

…

PID: 3
STS: swapout

…

Non-resident Process State

in memory on disk

(resident process descriptor)

• state that could be needed at any time

• information needed to schedule process

– run-state, priority, statistics

– data needed to signal or awaken process

• identification information

– process ID, user ID, group ID, parent ID

• communication and synchronization resources

– semaphores, pending signals, mail-boxes

• pointer to non-resident state
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(non-resident process state)

• information needed only when process runs

– can swap out to free memory for other processes

• execution state

– supervisor mode stack

– including: saved register values, PC, PS

• pointers to resources used when running

– current working directory, open file descriptors

• pointers to text, data and stack segments

– used to reconstruct the address space
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Creating a new process

• allocate/initialize resident process description

• allocate/initialize non-resident description

• duplicate parent resource references (e.g. fds)

• create a virtual address space

– allocate memory for code, data and stack

– load/copy program code and data

– copy/initialize a stack segment

– set up initial registers (PC, PS, SP)

• return from supervisor mode into new process
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Limited Direct Execution

• CPU directly executes all application code

– punctuated by occasional traps (for system calls)

– with occasional timer interrupts (for time sharing)

• Maximizing direct execution is always the goal

– for Linux user mode processes

– for OS emulation (e.g. Windows on Linux)

– for virtual machines

• Enter the OS as seldom as possible

– get back to the application as quickly as possible
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Asynchronous Exceptions

• some errors are routine

– end of file, arithmetic overflow, conversion error

– we should check for these after each operation

• some errors occur unpredictably

– segmentation fault (e.g. dereferencing NULL)

– user abort (^C), hang-up, power-failure

• these must raise asynchronous exceptions

– some languages support try/catch operations

– computers support traps

– operating systems also use these for system calls
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System Call Trap Gates
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1st level trap handler

2nd level handler
(system service 

implmementation)

return to
user mode

Application Program

user mode
supervisor modePS/PC

TRAP vector table

PS/PC
PS/PC
PS/PC

instr ; instr ; instr ; trap ; instr ; instr ; 

system call dispatch 
table

(Trap Handling)

• hardware trap handling

– trap cause as index into trap vector table for PC/PS

– load new processor status word, switch to supv mode

– push PC/PS of program that cuased trap onto stack

– load PC (w/addr of 1st level handler)

• software trap handling

– 1st level handler pushes all other registers

– 1st level handler gathers info, selects 2nd level handler

– 2nd level handler actually deals with the problem

• handle the event, kill the process, return ...
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Using Traps for System Calls

• reserve one illegal instruction for system calls

– most computers specifically define such instructions

• define system call linkage conventions

– call: r0 = system call number, r1 points to arguments

– return: r0 = return code, cc indicates success/failure

• prepare arguments for the desired system call

• execute the designated system call instruction

• OS recognizes & performs requested operation

• returns to instruction after the system call
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Stacking and unstacking a System Call
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stack frames
from

application
computation

User-mode Stack Supervisor-mode Stack

direction
of growth

user mode
PC & PS

saved
user mode
registers

parameters
to system

call handler

return PC

system call
handler

stack frame

resumed
computation

(Returning to User-Mode)

• return is opposite of interrupt/trap entry

– 2nd level handler returns to 1st level handler

– 1st level handler restores all registers from stack

– use privileged return instruction to restore PC/PS

– resume user-mode execution at next instruction

• saved registers can be changed before return

– change stacked user r0 to reflect return code

– change stacked user PS to reflect success/failure
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Asynchronous Events

• some things are worth waiting for

– when I read(), I want to wait for the data

• sometimes waiting doesn’t make sense

– I want to do something else while waiting

– I have multiple operations outstanding

– some events demand very prompt attention

• we need event completion call-backs

– this is a common programming paradigm

– computers support interrupts (similar to traps)

– commonly associated with I/O devices and timers
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User-Mode Signal Handling

• OS defines numerous types of signals

– exceptions, operator actions, communication

• processes can control their handling

– ignore this signal (pretend it never happened)

– designate a handler for this signal

– default action (typically kill or coredump process)

• analogous to hardware traps/interrupts

– but implemented by the operating system

– delivered to user mode processes
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Signals and Signal Handling

• when an asynchronous exception occurs

– the system invokes a specified exception handler

• invocation looks like a procedure call

– save state of interrupted computation

– exception handler can do what ever is necessary

– handler can return, resume interrupted computation

• more complex than a procedure call and return

– must also save/restore condition codes & volatile regs

– may abort rather than return
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Signals: sample code
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int fault_expected, fault_happened;

void handler( int sig) {

if (!fault_expected) exit(-1); /* if not expected, die */

else fault_happened = 1; /* if expected, note it happened */

}

signal(SIGHUP, SIGIGNORE); /* ignore hang-up signals */

signal(SIGSEGV, &handler); /* handle segmentation faults */

...

fault_happened = 0; fault_expected = 1;

... /* code that might cause a segmentation fault */

fault_expected = 0;
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Stacking a signal delivery
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p1: parameters

p1: saved registers

p1: local variables

p1: computation

p0: return address

PC/PS

(at time of exception)

handler: saved registers

handler: local variables

stack 

(at time of 

exception)

stack frame

(pushed by signal)
handler: parameters

addr of signal unstacker

signal handler sees

a completely 

standard appearing 

stack frame.

assignments

• reading for the next lecture

– Arpaci ch 7 … CPU Scheduling

– Arpaci ch 8 … Multi-Level Feedback

– Arpaci ch 10 … Multi-CPU Scheduling (skim)jjjjkkkk

– real-time scheduling

Quiz 4 is due before the lecture!

Start project 1 before lab sessionkk
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Supplementary Slides

Indirect binding to shared libraries

code segment

(read only)

…

call foo

…

shared library

(read only, at well known 

location)

foo:  …

...

jump foo
redirection table D1

Limitations of Shared Libraries

• not all modules will work in a shared library

– they cannot define/include static data storage

• they are read into program memory

– whether they are actually needed or not

• called routines must be known at compile-time

– only the fetching of the code is delayed 'til run-time

– symbols known at compile time, bound at link time

• Dynamically Loadable Libraries are more general

– they eliminate all of these limitations ... at a price

Loading and Binding w/DLLs

code segment

(read only)

Procedure Linkage Table

(writeable)

…

call foo

…

run time

loader

new code 

segment

foo:  …

...

jump fooload foo.dll
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(run-time binding to DLLs)

• load module includes a Procedure Linkage Table

– addresses for routines in DLL resolve to entries in PLT

– each PLT entry contains a system call to run-time 
loader (asking it to load the corresponding routine)

• first time a routine is called, we call run-time 
loader

– which finds, loads, and initializes the desired routine

– changes the PLT entry to be a jump to loaded routine

– then jumps to the newly loaded routine

• subsequent calls through that PLT entry go 
directly

Shared Libraries vs. DLLs

• both allow code sharing and run-time binding

• shared libraries

– do not require a special linkage editor

– shared objects obtained at program load time

• Dynamically Loadable Libraries

– require smarter linkage editor, run-time loader

– modules are not loaded until they are needed

• automatically when needed, or manually by program

– complex, per-routine, initialization can be performed

• e.g. allocation of private data area for persistent local 
variables

E1

Dynamic Loading

• DLLs are not merely “better” shared libraries

– libraries are loaded to satisfy static external references

– DLLs are designed for dynamic binding

• Typical DLL usage scenario

– identify a needed module (e.g. device driver)

– call RTL to load the module, get back a descriptor

– use descriptor to call initialization entry-point

– initialization function registers all other entry points

– module is used as needed

– later we can unregister, free resources, and unload


