
4/6/2016

1

Operating Systems Principles

Scheduling

Algorithms, Mechanisms, Performance

Mark Kampe

(markk@cs.ucla.edu)

Processes, Execution, and State

4A. Introduction to Scheduling

4B. Non-Preemptive Scheduling

4C. Preemptive Scheduling

4D. Adaptive Scheduling

4E. Introduction to System Performance

2Scheduling: Algorithms, Mechanisms and Performance

What is CPU Scheduling?

• Choosing which ready process to run next

• Goals:

– keeping the CPU productively occupied

– meeting the user’s performance expectations

Scheduling: Algorithms, Mechanisms and Performance 3

ready queue dispatcher
context
switcher

CPU

yield (or preemption)

resource
manager resource requestresource grantednew process

Goals and Metrics

• goals should be quantitative and measurable

– if something is important, it must be measurable

– if we want "goodness" we must be able to quantify it

– you cannot optimize what you do not measure

• metrics ... the way & units in which we measure

– choose a characteristic to be measured

• it must correlate well with goodness/badness of service

• it must be a characteristic we can measure or compute

– find a unit to quantify that characteristic

– define a process for measuring the characteristic

Scheduling: Algorithms, Mechanisms and Performance 4

CPU Scheduling: Proposed Metrics

Scheduling: Algorithms, Mechanisms and Performance 5

• candidate metric: time to completion (seconds)

– different processes require different run times

• candidate metric: throughput (procs/second)

– same problem, not different processes

• candidate metric: response time (milliseconds)

– some delays are not the scheduler’s fault

• time to complete a service request, wait for a resource

• candidate metric: fairness (standard deviation)

– per user, per process, are all equally important

Rectified Scheduling Metrics

• mean time to completion (seconds)

– for a particular job mix (benchmark)

• throughput (operations per second)

– for a particular activity or job mix (benchmark)

• mean response time (milliseconds)

– time spent on the ready queue

• overall “goodness”

– requires a customer specific weighting function

– often stated in Service Level Agreements

Scheduling: Algorithms, Mechanisms and Performance 6

4/6/2016

2

Basic Scheduling State Model

• a process may block to await

– completion of a requested I/O operation

– availability of an requested resource

– some external event

• or a process can simply yield

Scheduling: Algorithms, Mechanisms and Performance 7

blocked ready

runningexit

allocate

create

request

Non-Preepmtive Scheduling

• scheduled process runs until it yields CPU

– may yield specifically to another process

– may merely yield to "next" process

• works well for simple systems

– small numbers of processes

– with natural producer consumer relationships

• depends on each process to voluntarily yield

– a piggy process can starve others

– a buggy process can lock up the entire system

Scheduling: Algorithms, Mechanisms and Performance 8

Non-Preemptive: First-In-First-Out

• Algorithm:

– run first process in queue until it blocks or yields

• Advantages:

– very simple to implement

– seems intuitively fair

– all process will eventually be served

• Problems:

– highly variable response time (delays)

– a long task can force many others to wait (convoy)

Scheduling: Algorithms, Mechanisms and Performance 9

Example: First In First Out

Scheduling: Algorithms, Mechanisms and Performance 10

A B C

20 40 60 80 100 1200

20 40 60 80 100 1200

A B C

Tav = (10 +20 + 120)/3

= 50

Tav = (100 +110 + 120)/3

= 110

Non-Preemptive: Shortest Job First

• Algorithm:

– all processes declare their expected run time

– run the shortest until it blocks or yields

• Advantages:

– likely to yield the fastest response time

• Problems:

– some processes may face unbounded wait times

• Is this fair? Is this even “correct” scheduling?

– ability to correctly estimate required run time

Scheduling: Algorithms, Mechanisms and Performance 11

Starvation

• unbounded waiting times

– not merely a CPU scheduling issue

– it can happen with any controlled resource

• caused by case-by-case discrimination

– where it is possible to lose every time

• ways to prevent

– strict (FIFO) queuing of requests

• credit for time spent waiting is equivalent

• ensure that individual queues cannot be starved

– input metering to limit queue lengths

Scheduling: Algorithms, Mechanisms and Performance 12

4/6/2016

3

Non-Preemptive: Priority

• Algorithm:

– all processes are given a priority

– run the highest priority until it blocks or yields

• Advantages:

– users control assignment of priorities

– can optimize per-customer “goodness” function

• Problems:

– still subject to (less arbitrary) starvation

– per-process may not be fine enough control

Scheduling: Algorithms, Mechanisms and Performance 13

Preemptive Scheduling

• a process can be forced to yield at any time

– if a higher priority process becomes ready

• perhaps as a result of an I/O completion interrupt

– if running process's priority is lowered

• Advantages

– enables enforced "fair share" scheduling

• Problems

– introduces gratuitous context switches

– creates potential resource sharing problems

Scheduling: Algorithms, Mechanisms and Performance 14

Forcing Processes to Yield

• need to take CPU away from process

– e.g. process makes a system call, or clock interrupt

• consult scheduler before returning to process

– if any ready process has had priority raised

– if any process has been awakened

– if current process has had priority lowered

• scheduler finds highest priority ready process

– if current process, return as usual

– if not, yield on behalf of the current process

Scheduling: Algorithms, Mechanisms and Performance 15

Preemptive: Round-Robin

• Algorithm

– processes are run in (circular) queue order

– each process is given a nominal time-slice

– timer interrupts process if time-slice expires

• Advantages

– greatly reduced time from ready to running

– intuitively fair

• Problems

– some processes will need many time-slices

– extra interrupts/context-switches add overhead

Example: Round-Robbin

Scheduling: Algorithms, Mechanisms and Performance 17

A B C

20 40 60 80 100 1200

20 40 60 80 100 1200

A

B C

Trsp = (0 +30 + 60)/3

= 30

Trsp = (0 +11 + 22)/3

= 11

A

B C

A

B C

Costs of an extra context-switch

• entering the OS

– taking interrupt, saving registers, calling scheduler

• cycles to choose who to run

– the scheduler/dispatcher does work to choose

• moving OS context to the new process

– switch process descriptor, kernel stack

• switching process address spaces

– map-out old process, map-in new process

• losing hard-earned L1 and L2 cache contents

Scheduling: Algorithms, Mechanisms and Performance 18

4/6/2016

4

Response Time/Throughput Trade-off

1000 500 200 125 80 60 40 20 12 8 4 1

Throughput

Response Time

Scheduling: Algorithms, Mechanisms and Performance 19

Time-Slice/Context Switch overhead

So which approach is best?

• preemptive has better response time

– but what should we choose for our time-slice?

• non-preemptive has lower overhead
– but how should we order our the processes?

• there is no one “best” algorithm
– performance depends on the specific job mix

– goodness is measured relative to specific goals

• a good scheduler must be adaptive
– responding automatically to changing loads

– configurable to meet different requirements

Scheduling: Algorithms, Mechanisms and Performance 20

The “Natural” Time-Slice

• CPU share = time_slice x slices/second

2% = 20ms/sec 2ms/slice x 10 slices/sec

2% = 20ms/sec 5ms/slice x 4 slices/sec

• context switches are far from free

– they waste otherwise useful cycles

– they introduce delay into useful computations

• natural rescheduling interval

– when a process blocks for resources or I/O

– optimal time-slice would be based on this period

Scheduling: Algorithms, Mechanisms and Performance 21

Dynamic Multi-Queue Scheduling
• natural time-slice is different for each process

– create multiple ready queues

– some with short time-slices that run more often

– some with long time-slices that run infrequently

– different queues may get different CPU shares

• Advantages:
– response time very similar to Round-Robin

– relatively few gratuitous preemptions

• Problem:

– how do we know where a process belongs

Scheduling: Algorithms, Mechanisms and Performance 22

Dynamic Equilibrium

• Natural equilibria are seldom calibrated

• Usually the net result of

– competing processes

– negative feedback

• Once set in place these processes

– are self calibrating

– automatically adapt to changing circumstances

• The tuning is in rate and feedback constants

– avoid over-correction, ensure covergence

Scheduling: Algorithms, Mechanisms and Performance 23

Dynamic Multi-Queue Scheduling

Scheduling: Algorithms, Mechanisms and Performance 24

tsmax = ∞
real time queue

#tse = ∞#yield = ∞

tsmax = 500us
short quantum queue

#tse = 10#yield = ∞

tsmax = 2ms
medium quantum queue

#tse = 50#yield = 10

tsmax = 5ms
long quantum queue

#tse = ∞#yield = 20

share
scheduler

20%

50%

25%

05%

4/6/2016

5

Mechanism/Policy Separation

• simple built-in scheduler mechanisms

– always run the highest priority process

– formulae to compute priority and time slice length

• controlled by user specifiable policy

– per process (inheritable) parameters
– initial, relative, minimum, maximum priorities

– queue in which process should be started (or resumed)

– these can be set based on user ID, or program being run

– per queue parameters
– maximum time slice length and number of time slices

– priority change per unit of run time and wait time

– CPU share (absolute or relative to other queues)

Scheduling: Algorithms, Mechanisms and Performance 25

CPU Scheduling is not Enough

• CPU scheduler chooses a ready process

• memory scheduling

– a process on secondary storage is not ready

• resource allocation

– a process waiting for a resource is not ready

• I/O scheduling

– a process waiting for I/O is not ready

• cache management

– if process data is not cached, it will need more I/O

Scheduling: Algorithms, Mechanisms and Performance 26

assignments

• reading for the next lecture

– Arpaci ch 12 … Introduction

– Arpaci ch 13 … Address Spaces

– Arpaci ch 14 … Memory API

– Arpaci ch 15 … Address Translation

– Arpaci ch 16 … Segmentation

– Arpaci ch 17 … Free Space Management

Quiz 5 is due before the lecture!

Have your project 1 issues ready for lab session

Scheduling: Algorithms, Mechanisms and Performance 27

Supplementary Slides

Charles Dickens on System Performance

Scheduling: Algorithms, Mechanisms and Performance 29

“Annual income, twenty pounds;

annual expenditure, nineteen, nineteen, six;

Result … happiness.

Annual income, twenty pounds;

annual expenditure, twenty pounds ought & six;

Result … misery!”

Wilkins Micawber, David Copperfield

Performance: Throughput vs Load

Scheduling: Algorithms, Mechanisms and Performance 30

throughput

offered load

ideal

typical

4/6/2016

6

(why throughput falls off)

• dispatching processes is not free

– it takes time to dispatch a process (overhead)

– more dispatches means more overhead (lost time)

– less time (per second) is available to run processes

• how to minimize the performance gap

– reduce the overhead per dispatch

– minimize the number of dispatches (per second)

• allow longer time slices per task

• increase the number of servers (e.g. CPUs)

• this phenomenon will be seen in many areas

Scheduling: Algorithms, Mechanisms and Performance 31

Performance: response time vs load

Scheduling: Algorithms, Mechanisms and Performance 32

delay
(response time)

offered load

ideal

typical

(why response time grows w/o limit)

• response time is function of server & load

– how long it takes to complete one request

– how long the waiting line is

• length of the line is function of server & load

– how long it takes to complete one request

– the average inter-request arrival interval

• if requests arrive faster than they are serviced

– the length of the waiting list grows

– and the response time grows with it

Scheduling: Algorithms, Mechanisms and Performance 33

Graceful Degradation

• when is a system "Overloaded"?

– when it is no longer able to meet service goals

• what can we do when overloaded?

– continue service, but with degraded performance

– maintain acceptable performance by rejecting work

– resume normal service when load drops to normal

• what can we not do when overloaded?

– allow throughput to drop to zero (stop doing work)

– allow response time to grow without limit

Scheduling: Algorithms, Mechanisms and Performance 34

