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Memory Management

1. allocate/assign physical memory to processes

– explicit requests: malloc (sbrk)

– implicit: program loading, stack extension

2. manage the virtual address space

– instantiate virtual address space on context switch

– extend or reduce it on demand

3. manage migration to/from secondary storage

– optimize use of main storage

– minimize overhead (waste, migrations)
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Memory Management Goals

1. transparency

– process sees only its own virtual address space

– process is unaware memory is being shared

2. efficiency

– high effective memory utilization

– low run-time cost for allocation/relocation

3. protection and isolation

– private data will not be corrupted

– private data cannot be seen by other processes
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Primary and Secondary Storage

• primary = main (executable) memory

– primary storage is expensive and very limited

– only processes in primary storage can be run

• secondary = non-executable (e.g. Disk/SSD)

– blocked processes can be moved to secondary storage

– swap out code, data, stack and non-resident context

– make room in primary for other "ready" processes

• returning to primary memory

– process is copied back when it becomes unblocked
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Why we swap

• make best use of a limited amount of memory

– process can only execute if it is in memory

– can’t keep all processes in memory all the time

– if it isn't READY, it doesn't need to be in memory

– swap it out and make room for other processes

• improve CPU utilization

– when there are no READY processes, CPU is idle

– CPU idle time means reduced system throughput

– more READY processes means better utilization
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scheduling states with swapping
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Pure Swapping

• each segment is contiguous

– in memory, and on secondary storage

– all in memory, or all on swap device

• swapping takes a great deal of time

– transferring entire data (and text) segments

• swapping wastes a great deal of memory

– processes seldom need the entire segment

• variable length memory/disk allocation

– complex, expensive, external fragmentation
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paged address translation

CODE DATA STACK

process virtual address space

physical memory
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Paging and Fragmentation

a segment is implemented as a set of virtual pages

• internal fragmentation

– averages only ½ page (half of the last one)

• external fragmentation

– completely non-existent (we never carve up pages)
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Paging Memory Management Unit
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Paging Relocation Examples
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Demand Paging

• paging MMU supports not present pages

– generates a fault/trap when they are referenced

– OS can bring in page, retry the faulted reference

• entire process needn’t be in memory to run 

– start each process with a subset of its pages

– load additional pages as program demands them

• they don't need all the pages all the time

– code execution exhibits reference locality

– data references exhibit reference locality

C1
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Demand Paging – advantages

• improved system performance

– fewer in-memory pages per process

– more processes in primary memory

• more parallelism, better throughput

• better response time for processes already in memory

– less time required to page processes in and out

• fewer limitations on process size

– process can be larger than physical memory

– process can have huge (sparse) virtual space
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Page Fault Handling

• initialize page table entries to not present

• CPU faults when invalid page is referenced

1. trap forwarded to page fault handler

2. determine which page, where it resides

3. find and allocate a free page frame

4. block process, schedule I/O to read page in

5. update page table point at newly read-in page

6. back up user-mode PC to retry failed instruction

7. unblock process, return to user-mode
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Demand Paging and Performance

• page faults hurt performance

– increased overhead
• additional context switches and I/O operations

– reduced throughput
• processes are delayed waiting for needed pages

• key is having the "right" pages in memory

– right pages -> few faults, little overhead/delay

– wrong pages -> many faults, much overhead/delay

• we have little control over what we bring in
– we read the pages the process demands

• key to performance is which pages we evict
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Belady's Optimal Algorithm

• Q: which page should we replace?

A: the one we won't need for the longest time

• Why is this the right page?

– it delays the next page fault as long as possible

– minimum number of page faults per unit time

• How can we predict future references?

– Belady cannot be implemented in a real system

– but we can run implement it for test data streams

– we can compare other algorithms against it

17Virtual Memory and Paging

Approximating Optimal Replacement

• note which pages have recently been used

– use this data to predict future behavior

• Possible replacement algorithms

– random, FIFO: straw-men ... forget them

• Least Recently Used

– assert near future will be like recent past

• programs do exhibit temporal and spatial locality

• if we haven’t used it recently, we probably won’t soon

– we don’t have to be right 100% of the time

• the more right we are, the more page faults we save
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Why Programs Exhibit Locality

• Code locality

– code in same routine is in same/adjacent page

– loops iterate over the same code

– a few routines are called repeatedly

– intra-module calls are common

• Stack locality

– activity focuses on this and adjacent call frames

• Data reference locality

– this is common, but not assured
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True LRU is hard to implement

• maintain this information in the MMU?

– MMU notes the time, every time a page is referenced

– maybe we can get a per-page read/written bit

• maintain this information in software?

– mark all pages invalid, even if they are in memory

– take a fault the first time each page is referenced

– then mark this page valid for the rest of the time slice

• finding oldest page is prohibitively expensive

– 16GB memory / 4K page = 4M pages to scan
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Practical LRU surrogates

• must be cheap

– can’t cause additional page faults

– avoid scanning the whole page table (it is big)

• clock algorithms … a surrogate for LRU

– organize all pages in a circular list

– position around the list is a surrogate for age

– progressive scan whenever we need another page

• for each page, ask MMU if page has been referenced

• if so, reset the reference bit in the MMU; skip page

• if not, consider this page to be the least recently used
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True Global LRU Replacement
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LRU Clock Algorithm
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Working Sets – per process LRU

• Global LRU is probably a blunder

– bad interaction with round-robin scheduling

– better to give each process it's own page pool

– do LRU replacement within that pool

• fixed # of pages per process is also bad

– different processes exhibit different locality

• which pages are needed changes over time

• number of pages needed changes over time

– much like different natural scheduling intervals

• we clearly want dynamic working sets
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“natural” working set size

number 
of page 
faults

working set size

the
sweet
spot

“thrashing” in 
insufficient space

It can’t be done!

little marginal benefit 
for additional space

More, is just “more”.
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(Optimal Working Sets)

• What is optimal working set for a process?

– number of pages needed during next time slice

• what if try to run process in fewer pages?

– needed pages replace one another continuously

– this is called "thrashing"

• how can we know what working set size is?

– by observing the process behavior

• which pages should be in the working-set?

– no need to guess, the process will fault for them

26Virtual Memory and Paging

Implementing Working Sets

• managed working set size

– assign page frames to each in-memory process

– processes page against themselves in working set

– observe paging behavior (faults per unit time)

– adjust number of assigned page frames accordingly

• page stealing (WS-Clock) algorithms

– track last use time for each page, for owning process

– find page least recently used (by its owner)

– processes that need more pages tend to get more

– processes that don't use their pages tend to lose them
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Working Set Clock Algorithm
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Working Set Clock Algorithm
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Thrashing Prevention

• working set size characterizes each process

– how many pages it needs to run for τ milliseconds

• What if we don’t have enough memory?

– sum of our working sets exceeds available memory

• we cannot squeeze working set sizes

– this will result in thrashing

• reduce number of competing processes

– swap some of the ready processes out

– to ensure enough memory for the rest to run

• we can round-robbin who is in and out
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Pre-loading – a page/swap hybrid

• what happens when process swaps in

• pure swapping

– all pages present before process is run, no page faults

• pure demand paging

– pages are only brought in as needed

– fewer pages per process, more processes in memory

• what if we pre-load the last working set?

– far fewer pages to be read in than swapping

– probably the same disk reads as pure demand paging

– far fewer initial page faults than pure demand paging
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Clean and Dirty Pages

• consider a page, recently paged in from disk

– there are two copies, on on disk, one in memory

• if the in-memory copy has not been modified

– there is still a valid copy on disk

– the in-memory copy is said to be "clean"

– we can replace page without writing it back to disk

• if the in-memory copy has been modified

– the copy on disk is no longer up-to-date

– the in-memory copy is said to be "dirty"

– if we write it out to disk, it becomes "clean" again
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preemptive page laundering

• clean pages can be replaced at any time

– copy on disk is already up to date

– clean pages give flexibility to memory scheduler

– many pages that can, if necessary, be replaced

• ongoing background write-out of dirty pages

– find and write-out all dirty, non-running pages

• no point in writing out a page that is actively in use

– on assumption we will eventually have to page out

– make them clean again, available for replacement

• this is the outgoing equivalent of pre-loading
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Copy on Write

• fork(2) is a very expensive operation

– we must copy all private data/stack pages

– sadly most will be discarded by next exec(2)

• assume child will not update most pages

– share all private pages, mark them copy on write

– change them to be read-only for parent and child

– on write-page fault, make a copy of that page

– on exec, remaining pages become private again

• copy on write is a common optimization
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assignments

• reading for the next lecture

– Inter-Process Communication

– named pipes … simple stream communication

– send(2), recv(2) … network communication

– mmap(2) … shared memory segments

– Arpaci ch 25 … Introduction

– Arpaci ch 26 … Concurrency and Threads

– Arpaci ch 27 … Thread API

– User-Mode Threads
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paging and segmentation

• pages are a very nice memory allocation unit
– they eliminate internal and external fragmentation

– they admit of a very simple and powerful MMU

• they are not a particularly natural unit of data
– programs are comprised of, and operate on, segments

– segments are the natural “chunks” of virtual address space
• e.g. we map a new segment into the virtual address space

– each code, data, stack segment contains many pages

• two levels of memory management abstraction
– a virtual address space is comprised of segments

– relocation & swapping is done on a page basis

– segment base addressing, with page based relocation

• user processes see segments, paging is invisible
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segmentation on top of paging

process virtual address space

cs

ds

es

ss

segment base 
registers
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Segments – collections of pages

• a segment is a named collection of pages

– each page has a home on secondary storage

• operations on segments:

– create/open/destroy

– map/unmap segment to/from process

– find physical page number of virtual page n

• connection between paging & segmentation

– segment mapping implemented w/page mapping

– page faulting uses segments to find requested 
page B1
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Managing Secondary Storage

• where do pages live when not in memory?

– we swap them out to secondary storage (disk)

– how do we manage our swap space?

• as a pool of variable length partitions?

– allocate a contiguous region for each process

• as a random collection of pages?

– just use a bit-map to keep track of which are free

• as a file system?

– create a file per process (or segment)

– file offsets correspond to virtual address offsets

D2
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Paging and Shared Segments

• shared memory, executables and DLLs 

• created/managed as mappable segments

– one copy mapped into multiple processes

– demand paging same as with any other pages

– 2ndary home may be in a file system

• shared pages don't fit working set model

– may not be associated with just one process

– global LRU may be more appropriate

– shared pages often need/get special handling

F4

41Virtual Memory and Paging

Virtual Memory and I/O

• user I/O requests use virtual buffer address

– how can a device controller find that data

• kernel can copy data into physical buffers

– accessing user data through standard mechanisms

• kernel may translate virtual to physical

– give device the corresponding physical address

• CPU may include an I/O MMU

– use page tables to translate virt addrs to phys

– all DMA I/O references go through the I/O MMU

G1
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Scatter/Gather I/O

• many controllers support DMA transfers

– entire transfer must be contiguous in physical memory

• user buffers are in paged virtual memory

– user buffer may be spread all over physical memory

– scatter: read from device to multiple pages

– gather: writing from multiple pages to device

• same three basic approaches apply

– copy all user data into contiguous physical buffer

– split logical req into chain-scheduled page requests

– I/O MMU may automatically handle scatter/gather

43Virtual Memory and Paging

“gather” writes from paged memory

process virtual 
address space

physical 
memory 

DMA I/O stream

user I/O 
buffer
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“scatter” reads into paged memory

process virtual 
address space

physical 
memory 

DMA I/O stream

user I/O 
buffer
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