
4/12/2016

1

Operating Systems Principles

Virtual Memory and Paging

Mark Kampe

(markk@cs.ucla.edu)

Virtual Memory and Paging

6A. Introduction to Swapping and Paging

6B. Paging MMUs and Demand Paging

6C. Replacement Algorithms

6D. Thrashing and Working Sets

6E. Other optimizations

2Virtual Memory and Paging

Memory Management

1. allocate/assign physical memory to processes

– explicit requests: malloc (sbrk)

– implicit: program loading, stack extension

2. manage the virtual address space

– instantiate virtual address space on context switch

– extend or reduce it on demand

3. manage migration to/from secondary storage

– optimize use of main storage

– minimize overhead (waste, migrations)

Virtual Memory and Paging 3

Memory Management Goals

1. transparency

– process sees only its own virtual address space

– process is unaware memory is being shared

2. efficiency

– high effective memory utilization

– low run-time cost for allocation/relocation

3. protection and isolation

– private data will not be corrupted

– private data cannot be seen by other processes

Virtual Memory and Paging 4

Primary and Secondary Storage

• primary = main (executable) memory

– primary storage is expensive and very limited

– only processes in primary storage can be run

• secondary = non-executable (e.g. Disk/SSD)

– blocked processes can be moved to secondary storage

– swap out code, data, stack and non-resident context

– make room in primary for other "ready" processes

• returning to primary memory

– process is copied back when it becomes unblocked

Virtual Memory and Paging 5

Why we swap

• make best use of a limited amount of memory

– process can only execute if it is in memory

– can’t keep all processes in memory all the time

– if it isn't READY, it doesn't need to be in memory

– swap it out and make room for other processes

• improve CPU utilization

– when there are no READY processes, CPU is idle

– CPU idle time means reduced system throughput

– more READY processes means better utilization

Virtual Memory and Paging 6



4/12/2016

2

scheduling states with swapping

Virtual Memory and Paging 7

blocked ready

running

swapped
out

swap
wait

exit

allocate

allocate

swap out swap in

create

request

Pure Swapping

• each segment is contiguous

– in memory, and on secondary storage

– all in memory, or all on swap device

• swapping takes a great deal of time

– transferring entire data (and text) segments

• swapping wastes a great deal of memory

– processes seldom need the entire segment

• variable length memory/disk allocation

– complex, expensive, external fragmentation

8Virtual Memory and Paging

paged address translation

CODE DATA STACK

process virtual address space

physical memory

9Virtual Memory and Paging

Paging and Fragmentation

a segment is implemented as a set of virtual pages

• internal fragmentation

– averages only ½ page (half of the last one)

• external fragmentation

– completely non-existent (we never carve up pages)

10Virtual Memory and Paging

Paging Memory Management Unit

page # page #offset offset

virtual address physical address

page #

page #

page #

page #

page #

page #

page table

V

V

V

V

V

V

0

0

virtual page # is 
used as an index 
into the page table

selected entry 
contains physical 
page number.

offset within page 
remains the same.

valid bit is checked 
to ensure that this 
virtual page # is 
legal.

11Virtual Memory and Paging

Paging Relocation Examples

0004 041F1C08 1C08

virtual address physical address

0C20

0105

00A1

041F

0D10

0AC3

page table

V

V

V

V

V

V

0

0

0000 0100 0C20 01000005 3E28

page fault

12Virtual Memory and Paging



4/12/2016

3

Demand Paging

• paging MMU supports not present pages

– generates a fault/trap when they are referenced

– OS can bring in page, retry the faulted reference

• entire process needn’t be in memory to run 

– start each process with a subset of its pages

– load additional pages as program demands them

• they don't need all the pages all the time

– code execution exhibits reference locality

– data references exhibit reference locality

C1

13Virtual Memory and Paging

Demand Paging – advantages

• improved system performance

– fewer in-memory pages per process

– more processes in primary memory

• more parallelism, better throughput

• better response time for processes already in memory

– less time required to page processes in and out

• fewer limitations on process size

– process can be larger than physical memory

– process can have huge (sparse) virtual space

14Virtual Memory and Paging

Page Fault Handling

• initialize page table entries to not present

• CPU faults when invalid page is referenced

1. trap forwarded to page fault handler

2. determine which page, where it resides

3. find and allocate a free page frame

4. block process, schedule I/O to read page in

5. update page table point at newly read-in page

6. back up user-mode PC to retry failed instruction

7. unblock process, return to user-mode

15Virtual Memory and Paging

Demand Paging and Performance

• page faults hurt performance

– increased overhead
• additional context switches and I/O operations

– reduced throughput
• processes are delayed waiting for needed pages

• key is having the "right" pages in memory

– right pages -> few faults, little overhead/delay

– wrong pages -> many faults, much overhead/delay

• we have little control over what we bring in
– we read the pages the process demands

• key to performance is which pages we evict

Virtual Memory and Paging 16

Belady's Optimal Algorithm

• Q: which page should we replace?

A: the one we won't need for the longest time

• Why is this the right page?

– it delays the next page fault as long as possible

– minimum number of page faults per unit time

• How can we predict future references?

– Belady cannot be implemented in a real system

– but we can run implement it for test data streams

– we can compare other algorithms against it

17Virtual Memory and Paging

Approximating Optimal Replacement

• note which pages have recently been used

– use this data to predict future behavior

• Possible replacement algorithms

– random, FIFO: straw-men ... forget them

• Least Recently Used

– assert near future will be like recent past

• programs do exhibit temporal and spatial locality

• if we haven’t used it recently, we probably won’t soon

– we don’t have to be right 100% of the time

• the more right we are, the more page faults we save

18Virtual Memory and Paging



4/12/2016

4

Why Programs Exhibit Locality

• Code locality

– code in same routine is in same/adjacent page

– loops iterate over the same code

– a few routines are called repeatedly

– intra-module calls are common

• Stack locality

– activity focuses on this and adjacent call frames

• Data reference locality

– this is common, but not assured

Virtual Memory and Paging 19

True LRU is hard to implement

• maintain this information in the MMU?

– MMU notes the time, every time a page is referenced

– maybe we can get a per-page read/written bit

• maintain this information in software?

– mark all pages invalid, even if they are in memory

– take a fault the first time each page is referenced

– then mark this page valid for the rest of the time slice

• finding oldest page is prohibitively expensive

– 16GB memory / 4K page = 4M pages to scan

20Virtual Memory and Paging

Practical LRU surrogates

• must be cheap

– can’t cause additional page faults

– avoid scanning the whole page table (it is big)

• clock algorithms … a surrogate for LRU

– organize all pages in a circular list

– position around the list is a surrogate for age

– progressive scan whenever we need another page

• for each page, ask MMU if page has been referenced

• if so, reset the reference bit in the MMU; skip page

• if not, consider this page to be the least recently used

21Virtual Memory and Paging

True Global LRU Replacement

a b c d a b d e f a b c dreference

True LRU
frame 0

frame 1

frame 2

frame 3

a e d

d

c

a

b

e

!

!

!

f

a

b

c

d

!

e

!

loads 4, replacements 7

22Virtual Memory and Paging

LRU Clock Algorithm
a b c d a b d e f a b c dreference

True LRU

LRU clock

frame 0

frame 1

frame 2

frame 3

frame 0

frame 1

frame 2

frame 3

clock pos

a e d

d

c

a

b

e

d

a

b

f

a

b

c

d

a

e

d

loads 4, replacements 7

a

b

c

d

!

!

!

e

f

a

b

c

d

e

loads 4, replacements 7

0 1 2 3 0 0 0 0 3 1

!

!

31102 3

! ! !

! !

! !

12 0

!

2

E2

23Virtual Memory and Paging

Working Sets – per process LRU

• Global LRU is probably a blunder

– bad interaction with round-robin scheduling

– better to give each process it's own page pool

– do LRU replacement within that pool

• fixed # of pages per process is also bad

– different processes exhibit different locality

• which pages are needed changes over time

• number of pages needed changes over time

– much like different natural scheduling intervals

• we clearly want dynamic working sets

24Virtual Memory and Paging



4/12/2016

5

“natural” working set size

number 
of page 
faults

working set size

the
sweet
spot

“thrashing” in 
insufficient space

It can’t be done!

little marginal benefit 
for additional space

More, is just “more”.

25Virtual Memory and Paging

(Optimal Working Sets)

• What is optimal working set for a process?

– number of pages needed during next time slice

• what if try to run process in fewer pages?

– needed pages replace one another continuously

– this is called "thrashing"

• how can we know what working set size is?

– by observing the process behavior

• which pages should be in the working-set?

– no need to guess, the process will fault for them

26Virtual Memory and Paging

Implementing Working Sets

• managed working set size

– assign page frames to each in-memory process

– processes page against themselves in working set

– observe paging behavior (faults per unit time)

– adjust number of assigned page frames accordingly

• page stealing (WS-Clock) algorithms

– track last use time for each page, for owning process

– find page least recently used (by its owner)

– processes that need more pages tend to get more

– processes that don't use their pages tend to lose them

27Virtual Memory and Paging

1

Working Set Clock Algorithm
0 1 2 3 4 5 6 7 8 9 10 11 12

1 0 1 0 0 1 0 0

page frame

P0

15 51 65 80 15 70 72 54 23 45 25 47

referenced

process

last ref

clock ptr

13 14

0 1 1 1 0

P0 P0 P0 P0P1 P1 P1 P1 P1P2 P2 P2 P2 P2

69 33 25

1 11 11 1 11 1 111 1 1111 1

current execution times P0 = 55 P1 = 75 P2 = 80

P0 gets a fault
page 6 was just referenced

clear ref bit, update 
time

page 7 is (55-33=22) ms 
old

P0 replaces his own 
page

0

75

0

t = 15

28Virtual Memory and Paging

Working Set Clock Algorithm
0 1 2 3 4 5 6 7 8 9 10 11 12

1 0 1 0 0 0 0

page frame

P0

15 51 65 80 15 70 72 54 23 45 25 47

referenced

process

last ref

clock ptr

13 14

0 1 1 1 0

P0 P0 P0 P0P1 P1 P1 P1 P1P2 P2 P2 P2 P2

69 33 25

1 11 11 11 1 11 1 1111 1

current execution times P0 = 55 P1 = 75 P2 = 80

P0 gets a fault
page 6 was just referenced
page 7 is (55-33=22) ms 
old

P0 replaces his own 
page

P0 gets a fault
page 6 was just referenced
page 7 is (55-33=22) ms old
page 8 is (80-72=8) ms old
page 9 is (55-54=1) ms old
page 10 is (75-23=52) ms 
old

P0 steals this page from 
P1

0

75

0 0

P0

t = 25

E7

29Virtual Memory and Paging

Thrashing Prevention

• working set size characterizes each process

– how many pages it needs to run for τ milliseconds

• What if we don’t have enough memory?

– sum of our working sets exceeds available memory

• we cannot squeeze working set sizes

– this will result in thrashing

• reduce number of competing processes

– swap some of the ready processes out

– to ensure enough memory for the rest to run

• we can round-robbin who is in and out

30Virtual Memory and Paging



4/12/2016

6

Pre-loading – a page/swap hybrid

• what happens when process swaps in

• pure swapping

– all pages present before process is run, no page faults

• pure demand paging

– pages are only brought in as needed

– fewer pages per process, more processes in memory

• what if we pre-load the last working set?

– far fewer pages to be read in than swapping

– probably the same disk reads as pure demand paging

– far fewer initial page faults than pure demand paging

31Virtual Memory and Paging

Clean and Dirty Pages

• consider a page, recently paged in from disk

– there are two copies, on on disk, one in memory

• if the in-memory copy has not been modified

– there is still a valid copy on disk

– the in-memory copy is said to be "clean"

– we can replace page without writing it back to disk

• if the in-memory copy has been modified

– the copy on disk is no longer up-to-date

– the in-memory copy is said to be "dirty"

– if we write it out to disk, it becomes "clean" again

32Virtual Memory and Paging

preemptive page laundering

• clean pages can be replaced at any time

– copy on disk is already up to date

– clean pages give flexibility to memory scheduler

– many pages that can, if necessary, be replaced

• ongoing background write-out of dirty pages

– find and write-out all dirty, non-running pages

• no point in writing out a page that is actively in use

– on assumption we will eventually have to page out

– make them clean again, available for replacement

• this is the outgoing equivalent of pre-loading

33Virtual Memory and Paging

Copy on Write

• fork(2) is a very expensive operation

– we must copy all private data/stack pages

– sadly most will be discarded by next exec(2)

• assume child will not update most pages

– share all private pages, mark them copy on write

– change them to be read-only for parent and child

– on write-page fault, make a copy of that page

– on exec, remaining pages become private again

• copy on write is a common optimization

Virtual Memory and Paging 34

assignments

• reading for the next lecture

– Inter-Process Communication

– named pipes … simple stream communication

– send(2), recv(2) … network communication

– mmap(2) … shared memory segments

– Arpaci ch 25 … Introduction

– Arpaci ch 26 … Concurrency and Threads

– Arpaci ch 27 … Thread API

– User-Mode Threads

Virtual Memory and Paging 35

Supplementary Slides



4/12/2016

7

paging and segmentation

• pages are a very nice memory allocation unit
– they eliminate internal and external fragmentation

– they admit of a very simple and powerful MMU

• they are not a particularly natural unit of data
– programs are comprised of, and operate on, segments

– segments are the natural “chunks” of virtual address space
• e.g. we map a new segment into the virtual address space

– each code, data, stack segment contains many pages

• two levels of memory management abstraction
– a virtual address space is comprised of segments

– relocation & swapping is done on a page basis

– segment base addressing, with page based relocation

• user processes see segments, paging is invisible

37Virtual Memory and Paging

segmentation on top of paging

process virtual address space

cs

ds

es

ss

segment base 
registers

38Virtual Memory and Paging

Segments – collections of pages

• a segment is a named collection of pages

– each page has a home on secondary storage

• operations on segments:

– create/open/destroy

– map/unmap segment to/from process

– find physical page number of virtual page n

• connection between paging & segmentation

– segment mapping implemented w/page mapping

– page faulting uses segments to find requested 
page B1

39Virtual Memory and Paging

Managing Secondary Storage

• where do pages live when not in memory?

– we swap them out to secondary storage (disk)

– how do we manage our swap space?

• as a pool of variable length partitions?

– allocate a contiguous region for each process

• as a random collection of pages?

– just use a bit-map to keep track of which are free

• as a file system?

– create a file per process (or segment)

– file offsets correspond to virtual address offsets

D2

40Virtual Memory and Paging

Paging and Shared Segments

• shared memory, executables and DLLs 

• created/managed as mappable segments

– one copy mapped into multiple processes

– demand paging same as with any other pages

– 2ndary home may be in a file system

• shared pages don't fit working set model

– may not be associated with just one process

– global LRU may be more appropriate

– shared pages often need/get special handling

F4

41Virtual Memory and Paging

Virtual Memory and I/O

• user I/O requests use virtual buffer address

– how can a device controller find that data

• kernel can copy data into physical buffers

– accessing user data through standard mechanisms

• kernel may translate virtual to physical

– give device the corresponding physical address

• CPU may include an I/O MMU

– use page tables to translate virt addrs to phys

– all DMA I/O references go through the I/O MMU

G1

42Virtual Memory and Paging



4/12/2016

8

Scatter/Gather I/O

• many controllers support DMA transfers

– entire transfer must be contiguous in physical memory

• user buffers are in paged virtual memory

– user buffer may be spread all over physical memory

– scatter: read from device to multiple pages

– gather: writing from multiple pages to device

• same three basic approaches apply

– copy all user data into contiguous physical buffer

– split logical req into chain-scheduled page requests

– I/O MMU may automatically handle scatter/gather

43Virtual Memory and Paging

“gather” writes from paged memory

process virtual 
address space

physical 
memory 

DMA I/O stream

user I/O 
buffer

44Virtual Memory and Paging

“scatter” reads into paged memory

process virtual 
address space

physical 
memory 

DMA I/O stream

user I/O 
buffer

45Virtual Memory and Paging


