
4/19/2016

1

Operating Systems Principles

Mutual Exclusion, Asynchronous

Completion

Mark Kampe

(markk@cs.ucla.edu)

Mutual Exclusion, Asynchronous

Completion

8A. Mutual Exclusion

8B. Implementing Mutual Exclusion

8C. Blocking for Asynchronous Completions

8D. Implementing Asynchronous Completions

Mutual Exclusion and Asynchronous Completion 2

Obstacles to Atomic Execution

• Blocking

– thread requests a resource in the critical section

• Scheduling Preemption

– thread experiences time-slice-end

• Shared Memory Multi-Processor

– shared resources between cores or CPUs

• I/O Devices

– program and device accessing same memory

– program and ISR accessing same resources

Mutual Exclusion and Asynchronous Completion 3

The Mutual Exclusion Challenge

• We cannot prevent parallelism

– it is fundamental to our technology

• We cannot eliminate all shared resources

– increasingly important to ever more applications

• What we can do is ...

– identify the at risk resources, and risk scenarios

– design those classes to enable protection

– identify all of the critical sections

– ensure each is correctly protected (case by case)

Mutual Exclusion and Asynchronous Completion 4

Evaluating Mutual Exclusion

• Effectiveness/Correctness

– ensures before-or-after atomicity

• Fairness

– no starvation (un-bounded waits)

• Progress

– no client should wait for an available resource

– susceptibility to convoy formation, deadlock

• Performance

– delay, instructions, CPU load, bus load

– in contended and un-contended scenarios

Mutual Exclusion and Asynchronous Completion 5

Approach: Interrupt Disables

• temporarily block some or all interrupts

– can be done with a privileged instruction

– side-effect of loading new Processor Status

• abilities

– prevent Time-Slice End (timer interrupts)

– prevent re-entry of device driver code

• dangers

– may delay important operations

– a bug may leave them permanently disabled

Mutual Exclusion and Asynchronous Completion 6

4/19/2016

2

Preventing Preemption
DLL_insert(DLL *head, DLL*element) {

Mutual Exclusion and Asynchronous Completion

last->next = element;

head->prev = element;

}

DLL_insert(DLL *head, DLL*element) {

DLL *last = head->prev;

element->prev = last;

element->next = head;

last->next = element;

head->prev = element;

}

DLL *last = head->prev;

element->prev = last;

element->next = head;

int save = disableInterrupts();

restoreInterrupts(save);

7

Preventing Driver Reentrancy

zz_intr_handler() {
…
/* update data read count */
resid = zzGetReg(ZZ_R_LEN);

/* turn off device ability to interrupt */
zzSetReg(ZZ_R_CTRL, ZZ_NOINTR);
…

zz_io_startup(struct iorq *bp) {
…
save = intr_enable(ZZ_DISABLE);

/* program the DMA request */
zzSetReg(ZZ_R_ADDR, bp->buffer_start);
zzSetReg(ZZ_R_LEN, bp->buffer_length);
zzSetReg(ZZ_R_BLOCK, bp->blocknum);
zzSetReg(ZZ_R_CMD, bp->write?

ZZ_C_WRITE : ZZ_C_READ);
zzSetReg(ZZ_R_CTRL, ZZ_INTR+ZZ_GO);

/* reenable interrupts */
intr_enable(save);

Serious consequences could result if the interrupt handler was called while
we were half-way through programming the DMA operation.

Mutual Exclusion and Asynchronous Completion 8

Preventing Driver Reentrancy

• interrupts are usually self-disabling

– CPU may not deliver #2 until #1 is acknowledged

– interrupt vector PS usually disables causing intr

• they are restored after servicing is complete

– ISR may explicitly acknowledge the interrupt

– return from ISR will restore previous (enabled) PS

• drivers usually disable during critical sections

– updating registers used by interrupt handlers

– updating resources used by interrupt handlers

Mutual Exclusion and Asynchronous Completion 9

Interrupts and Resource Allocation

…

lock(event_list);

add_to_queue(event_list, my_proc);

Mutual Exclusion and Asynchronous Completion

unlock(event_list);

yield();

…

xx_interrupt:

…

lock(event_list);

post(event_list);

return;

10

Interrupts and Resource Allocation

• interrupt handlers are not allowed to block

– only a scheduled process/thread can block

– interrupts are disabled until call completes

• ideally they should never need to wait

– needed resources are already allocated

– operations implemented w/lock-free code

• brief spins may be acceptable

– wait for hardware to acknowledge a command

– wait for a co-processor to release a lock

Mutual Exclusion and Asynchronous Completion 11

Evaluating Interrupt Disables

• Effectiveness/Correctness

– ineffective against MP/device parallelism

– only usable by kernel mode code

• Progress

– deadlock risk (if ISR can block for resources)

• Fairness

– pretty good (assuming disables are brief)

• Performance

– one instruction, much cheaper than system call

– long disables may impact system performance

Mutual Exclusion and Asynchronous Completion 12

4/19/2016

3

Approach: Spin Locks

• loop until lock is obtained

– usually done with atomic test-and-set operation

• abilities

– prevent parallel execution

– wait for a lock to be released

• dangers

– likely to delay freeing of desired resource

– bug may lead to infinite spin-waits

Mutual Exclusion and Asynchronous Completion 13

Atomic Instructions

• atomic read/modify/write operations

– implemented by the memory bus

– effective w/multi-processor or device conflicts

– not available with (slower) I/O bus operations

• ordinary user-mode instructions

– may be supported by libraries or even compiler

• very expensive (e.g. 20-100x) instructions

– wait for all cores to write affected cache-line

– force all cores to drop affected cache-line

Mutual Exclusion and Asynchronous Completion 14

Atomic Instructions – Test & Set

Mutual Exclusion and Asynchronous Completion 15

/*

* Concept: Atomic Test-and-Set

* this is implemented in hardware, not code

*/

int TestAndSet(int *ptr, int new) {

int old = *ptr;

*ptr = new;

return(old);

}

Spin Locks

Mutual Exclusion and Asynchronous Completion

DLL_insert(DLL *head, DLL*element) {

while(TestAndSet(lock,1) == 1);

DLL *last = head->prev;

element->prev = last;

element->next = head;

last->next = element;

head->prev = element;

lock = 0;

}

16

Evaluating Spin Locks

• Effectiveness/Correctness

– effective against preemption and MP parallelism

– ineffective against conflicting I/O access

• Progress

– deadlock danger in ISRs, convoy formation

• Fairness

– possible unbounded waits

• Performance

– waiting can be extremely expensive (CPU, bus)

Mutual Exclusion and Asynchronous Completion 17

Approach: Lock-Free Operations

• MT safe data structures and operations

– an alternative to mutual-exclusion

• abilities

– single reader/writer w/ordinary instructions

– multi-reader/writer w/atomic instructions

– all-or-none and before-or-after semantics

• limitations

– unusable for complex critical sections

– unusable as a waiting mechanism

Mutual Exclusion and Asynchronous Completion 18

4/19/2016

4

Atomic Instructions – Compare & Swap

Mutual Exclusion and Asynchronous Completion 19

/*

* Concept: Atomic Compare and Swap

* this is implemented in hardware, not code

*/

int CompareAndSwap(int *ptr, int expected, int new) {

int actual = *ptr;

if (actual == expected)

*ptr = new;

return(actual);

}

Lock-Free Multi-Writer

// push an element on to a singly linked LIFO list

void SLL_push(SLL *head, SLL *element) {

do {

SLL *prev = head->next;

element->next = prev;

} while (CompareAndSwap(&head->next, prev, element) != prev);

}

Mutual Exclusion and Asynchronous Completion 20

Lock-Free Single Reader/Writer

int SPSC_put(SPSC *fifo, unsigned char c) {

if (SPSC_bytesIn(fifo) == fifo->full)

return(-1);

*(fifo->write) = c;

if (fifo->write == fifo->wrap)

fifo->write = fifo->start;

else

fifo->write++;

return(c);

}

Mutual Exclusion and Asynchronous Completion 21

int SPSC_get(SPSC *fifo) {

if (SPSC_bytesIn(fifo) == 0)

return(-1);

int ret = *(fifo->read);

if (fifo->read == fifo->wrap)

fifo->read = fifo->start;

else

fifo->read++;

return(ret);

}

int SPSC_bytesIn(SPSC *fifo) {

return(fifo->write >= fifo->read ?

fifo->write – fifo->read :

fifo->full – (fifo->read – fifo->write));

}

Evaluating Lock-Free Operations

• Effectiveness/Correctness

– effective against all conflicting updates

– cannot be used for complex critical sections

• Progress

– no possibility of deadlock or convoy

• Fairness

– small possibility of brief spins

• Performance

– expensive instructions, but cheaper than syscalls

Mutual Exclusion and Asynchronous Completion 22

Spin Locks vs Atomic Update Loops

• both involve spinning on an atomic update

• a spin-lock

– spins until the lock is released

– which could take a very long time

• an atomic update loop

– spins until there is no conflict during the update

– conflicting updates are actually very rare

• comparable for very brief critical sections

– e.g. a one-digit number of instructions

Mutual Exclusion and Asynchronous Completion 23

Spin Locks vs Atomic Updates

Mutual Exclusion and Asynchronous Completion 24

DLL_insert(DLL *head, DLL*element) {

while(TestAndSet(lock,1) == 1);

DLL *last = head->prev;

element->prev = last;

element->next = head;

last->next = element;

head->prev = element;

lock = 0;

}

void SLL_push(SLL *head, SLL *element) {

do {

SLL *prev = head->next;

element->next = prev;

} while (CompareAndSwap(&head->next, prev, element) != prev);

}

4/19/2016

5

Locking comes in many flavors

• lock and wait

– block until resource becomes available

• non-blocking

– return an error if resource is unavailable

• timed wait

– block a specified maximum time, then fail

• spin and wait (futex)

– spin briefly, and then join a waiting list

• strict FIFO

Mutual Exclusion and Asynchronous Completion 25

Asynchronous Completions

• Synchronous operations

– you call a subroutine

– it does what you need, and returns promptly

• Asynchronous operations/completions

– will happen at some future time

• when an I/O operation completes

• when a lock is released

– how do we block to await some future event?

• spin-locks combine lock and await

– good at locking, not so good at waiting

Mutual Exclusion and Asynchronous Completion 26

Spinning Sometimes Makes Sense

1. awaited operation proceeds in parallel

– a hardware device accepts a command

– another CPU releases a briefly held spin-lock

2. awaited operation guaranteed to be soon

– spinning is less expensive than sleep/wakeup

3. spinning does not delay awaited operation

– burning CPU delays running another process

– burning memory bandwidth slows I/O

4. contention is expected to be rare

– multiple waiters greatly increase the cost

Mutual Exclusion and Asynchronous Completion 27

The Classic “spin-wait”
/* set a specified register in the ZZ controller to a specified value */

zzSetReg(struct zzcontrol *dp, short reg, long value) {
while((dp->zz_status & ZZ_CMD_READY) == 0);

/* it may take a few ns to process the last set */
dp->zz_value = value;
dp->zz_reg = reg;
dp->zz_cmd = ZZ_SET_REG;

}

/* program the ZZ for a specified DMA read or write operation */

zzStartIO(struct zzcontrol *dp, struct ioreq *bp) {

zzSetReg(dp, ZZ_R_ADDR, bp->buffer_start);

zzSetReg(dp, ZZ_R_LEN, bp->buffer_length);

zzSetReg(dp, ZZ_R_CMD, bp->write ? ZZ_C_WRITE : ZZ_C_READ);

zzSetReg(dp, ZZ_R_CTRL, ZZ_INTR + ZZ_GO);

}

Mutual Exclusion and Asynchronous Completion 28

Correct Completion

• Correctness

– no lost wake-ups

• Progress

– if event has happened, process should not block

• Fairness

– no un-bounded waiting times

• Performance

– cost of waiting

– promptness of resuming

– minimal spurious wake-ups

Mutual Exclusion and Asynchronous Completion 29

Spinning and Yielding

• yielding is a good thing

– avoids burning cycles busy-waiting

– gives other tasks an opportunity to run

• spinning and yielding is not so good

– which process runs next is random

– when yielder next runs is random

• Progress: potentially un-bounded wait times

• Performance: each try is wasted cycles

Mutual Exclusion and Asynchronous Completion 30

4/19/2016

6

Who to Wake-Up - Waiting Lists

• random yielding and polling is foolish

– all waiters should block

– each should wake up when his event happens

• this suggests all events need a waiting list

– when posting an event, look up who to awaken

• wake up everyone on the list?

• one-at-a-time in FIFO order?

• one-at-a-time in priority order (possible starvation)?

– choice depends on event and application

Mutual Exclusion and Asynchronous Completion 31

Evaluating Waiting Lists

• Effectiveness/Correctness

– should be very good

• Progress

– there is a trade-off involving cutting in line

• Fairness

– should be very good

• Performance

– should be very efficient

– depends on frequency of spurious wakeups

Mutual Exclusion and Asynchronous Completion 32

Locking and Waiting Lists

• Spinning for a lock is usually a bad thing

– locks should probably have waiting lists

• a waiting list is a (shared) data structure

– implementation will likely have critical sections

– which may need to be protected by a lock

• This seems to be a circular dependency

– locks have waiting lists

– which must be protected by locks

– what if we must wait for the waiting list lock?

Mutual Exclusion and Asynchronous Completion 33

Sleep/Wakeup Races

void lock(lock_t *m) {

while (TestAndSet(&m->guard, 1) == 1);

if (!m->locked) {

m->locked = 1;

m->guard = 0;

} else {

queue_add(m->q, me);

m->guard = 0;

Mutual Exclusion and Asynchronous Completion 34

void unlock(lock_t *m) {

while (TestAndSet(&m->guard, 1) == 1);

if (queue_empty(m->q))

m->locked = 0;

else

unpark(queue_remove(m->q);

m->guard = 0;

}

park();

}

}

(sleep/wakeup races)

• possibility of long spins or deadlock

– interrupt comes in while guard is held

– ISR tries to wake-up the waiting list

• possibility of missed wakeup

– wakeup is sent before blockee can sleep

– blockee then blockee sleeps

• solutions (may require OS assistance)

– interrupts should be disabled in this crit section

– hyper-awake state prevents the next sleep

Mutual Exclusion and Asynchronous Completion 35

Progress vs. Fairness

• consider …

– P1: lock(), park()

– P2: unlock(), unpark()

– P3: lock()

• progress says:

– it is available, P3 gets it

– spurious wakeup of P1

• fairness says:

– FIFO, P3 gets in line

– and a convoy forms

Mutual Exclusion and Asynchronous Completion 36

void unlock(lock_t *m) {

while (TestAndSet(&m->guard, 1) == 1);

m->locked = 0;

if (!queue_empty(m->q))

unpark(queue_remove(m->q);

m->guard = 0;

}

void lock(lock_t *m) {

while(true) {

while (TestAndSet(&m->guard, 1) == 1);

if (!m->locked) {

m->locked = 1;

m->guard = 0;

return;

}

queue_add(m->q, me);

m->guard = 0;

park();

}

}

4/19/2016

7

assignments

• reading for the next lecture

– Arpaci ch 29 … Locked Data Structures

– Arpaci ch 30 … Condition Variables

– Arpaci ch 31 … Semaphores

– flock(2) … Posix file locking

– lockf(3) … ranged file locks

Mutual Exclusion and Asynchronous Completion 37

