Operating Systems Principles

Performance Measurement and Analysis

Mark Kampe (markk@cs.ucla.edu)

Performance Measurement and Analysis

- 11A. Introduction to performance and metrics
- 11B. Load characterization and generation
- 11C. Performance Measurement
- 11D. Performance Analysis
- 11E. Performance Documentation/Presentation

Performance Analysis Goals

- Quantify the system performance
 - for competitive positioning
 - to assess the efficacy of previous work
 - to identify future opportunities for improvement
- Understand the system performance

 what factors are limiting our current performance
 what choices make us subject to these limitations
- Predict system performance

Why performance is so hard

- components operate in a complex system
 - many steps/components in every process
 - ongoing competition for all resources
 - difficulty of making clear/simple assertions
 - systems too large to replicate in laboratory
- lack of clear/rigorous requirements
 - performance is highly dependent on specifics
 what we measure, how we measure it
 - ask the wrong question, get the wrong answer

Deadlock, Prevention and Avoidance

Metric

a standard unit

- metric must be quantifiable
 - time/rate, size/capacity, effectiveness/reliability ...

for measurement or evaluation

- metric must be measurable (or computable)

of something.

- an interesting/valuable quality/characteristic
- metric must be well-correlated with that quality

Statistical Measures of Samples

- tendency
 - mean ... the average of all samples
 - median ... the value of the middle sample
 - mode ... the most commonly occurring value
- dispersion
 - range ... between the highest and lowest samples
 - standard deviation (σ) ... range for 2/3 of samples
 - confidence interval ... Prob(x is within range)

Performance: what to measure

- competitive performance metrics
 - used to compare competing products
 nominal response time for simple query
 standard transactions per second
- engineering performance metrics

 used to spec components
 used to spec components
 - used to analyze performance problems
 - time to perform a particular sub-operation
 - channel utilization, idle time, cycles per operation
- be clear on what your goals are

Performance Testing

- identify key performance metrics
 - throughputs, response times, capacities
 - some may be external competitive numbers
 - some may be internal assessment numbers
- define ways to measure each

 test transactions and measurement points
- define suites to exercise and measure
 there are often performance benchmarks
- this testing should be automated

tem Testing and Performanc

Sources of Variation in Results

- inconsistent test conditions
 - varying platforms, operations, injection rates
 - background activity on test platform
 - start-up, accumulation, cache effects
- flawed measurement choices/techniques
 measurement artifact, sampling errors
 - measuring indirect/aggregate effects
- non-deterministic factors
 - queuing of processes, network and disk I/O
 - where (on disk) files are allocated

eadlock, Prevention and Avoidance

Meaningful Measurements

- measure under controlled conditions
 - on a specified platform
 - under a controlled and calibrated load
- measure the right things
 - direct measurements of key characteristics
- ensure quality of results
 - competing measurements we can cross-compare
 - measure/correct for artifacts
 - quantify repeatability/variability of results

System Testing and Performance

Operations, rates, mixes

- performance is operation-dependent
 - reads, writes, creates, deletes, lookups ...
 sequential, random, large, small
- it is also operation mix/order-dependent
 - synergistic (e.g. cache) effects
 - adverse (e.g. resource contention) effects
- what mix of operations should we measure
 - what best approximates expected usage?
 - what will best expose strengths and weaknesses

Deadlock, Prevention and Avoidance

Simulated Work Loads

- Artificial load generation
 - on-demand generation of a specified load
 - controllable operation rates, parameters, mixes
 - scalable to produce arbitrarily large loads
 - can collect excellent performance data
- Weaknesses
 - random traffic is not a usage scenario
 - wrong parameter choices yield unrealistic loads

Captured Sessions

- Captured operations from real systems
 - represent real usage scenarios
 - can be analyzed and replayed over and over
- Weakness
 - each represents only one usage scenario
 - multiple instances not equivalent to more users
 - danger of optimizing the wrong things
 - limited ability to exercise little-used features
 - they are kept around forever, and become stale

eadlock, Prevention and Avoidance

Testing under Live Loads

- Instrumented systems serving clients
 - real combinations of real scenarios
 - measured against realistic background loads
 - enables collection of data on real usage
- Weakness
 - demands good performance and reliability
 - potetially limited testing opportunities
 - load cannot be repeated/scaled on demand

Standard Benchmarks

- Carefully crafted/reviewed simulators
 - heavily reviewed by developers and customers
 - believed to be representative of real usage
 - standardized and widely available
 - well maintained (bugs, currency, improvements)
 - comparison of competing products
 - guide optimizations (of benchmark performance)
- Weakness
 - inertia, used where they are not applicable

Deadlock, Prevention and Avoidance

Common Performance Problems

- non-scalable solutions
 - cost per operation becomes prohibitive at scale
 - worse-than-linear overheads and algorithms
 - queuing delays associated w/high utilization
- bottlenecks
 - one component that limits system throughput
- accumulated costs
 - layers of calls, data copies, message exchanges
 - redundant or unnecessary work

Deadlock, Prevention and Avoidance

Dealing w/Performance Problems

- is a lot like finding and fixing a bug
 - formulate a hypothesis
 - gather data to verify your hypothesis
 - be sure you understand underlying problem
 - review proposed solutions
 - for effectiveness
 - for potential side effects
 - make simple changes, one at a time
 - re-measure to confirm effectiveness of each
- only harder

System Testing and Performance

End-to-End Testing

- client-side throughput/latency measurements
 - elapsed time for X operations of type Y
 - instrumented clients to collect detailed timings
- advantages
 - easy tests to run, easy data to analyze
 - results reflect client experienced performance
- disadvantages
 - no information about why it took that long
 - no information about resources consumed

Deadlock, Prevention and Avoidance

Common Measurement Mistakes

- measuring time but not utilization

 everything is fast on a lightly loaded system
- capturing averages rather than distributions

 outliers are usually interesting
- ignoring start-up, accumulation, cache effects

 not measuring what we thought
- ignoring instrumentation artifact

 it may greatly distort both times and loads

System Resource Utilization

0.005 user %nice 01 57.31 87 69.47	%system 0.36	%iowait	%irq			
user %nice .01 57.31			%ira			
.01 57.31			%ira			
.01 57.31					0/1-11-	land a la
	0.36			%soft	%idle	intr/s
87 69.47		0.13	0.01	0.00	39.19	1063.46
	0.44	0.05	0.01	0.01	24.16	262.11
.79 48.59	0.36	0.23	0.00	0.00	49.02	268.92
.19 42.63	0.28	0.16	0.01	0.00	54.73	260.96
17 68.56	0.34	0.06	0.03	0.00	28.83	271.47
read/s	wrtn/s	read		wrtn		
.72 1096.66	1598.70	271906870	04	39638273	344	
0 773.45	1329.09	19176867	94	32953548	388	
51 323.19	269.61	80132668	6 6684724	56		
L.31 945.97	1073.33	23454523	ô5	26612064	408	
1.31 945.95	1073.33	23453969	01	26612064	408	
3.03 207.05	972.42	51336421	3 24110230)92		
3.03 207.03	972.42	513308749	0 24110220	000		
	.17 68.56 read/s 4.72 1096.66 0 773.45 51 323.19 1.31 945.97 1.31 945.95	17 68.56 0.34	17 68.56 0.34 0.06 read/s wrtn/s read 172 1096.66 1598.70 27190687 0 773.45 1329.09 10176867 51 323.19 269.61 80132668 131 945.97 1073.33 23453969 131 945.97 1073.33 23453969	17 68.56 0.34 0.06 0.33 read/s wrtn/s read r.72 1096.66 1598.70 2719068704 0 773.45 1329.09 1917686734 51 323.19 269.61 80132686 66847245 1.31 945.97 1073.33 2345322061 131	17 68.56 0.34 0.06 0.33 0.00 read/s wtn/s read wtn r.72 1096.66 1598.70 2719068704 3963827 0 773.46 1323.09 1917686794 3295344 51 323.19 269.61 801326686 668472456 1.31 945.95 1073.33 2345452365 26612064 3.13 945.95 1073.33 2345396301 26612064	17 68.56 0.34 0.06 0.33 0.00 28.83 read/s wrtn/s read wrtn 305.827.44 305.827.44 17.2 1096.66 1598.70 27190570.4 305.827.344 305.827.344 0 77.34 1329.09 191768679.4 3295.54888 311.34 51 23.19 269.61 801326686 668472456 361206408 31.34 131 945.57 1073.33 2345452365 2661206408 31.34 945.57 1073.33 234539501 2661206408 32535488

Cache, Accumulation Start-up Effects

- cached results may accelerate some runs
 - random requests that are unlikely to be in cache
 - overwhelm cache w/new data between tests
 - disable or bypass cache entirely
- start-up costs distort total cost of computation – do all forks/opens prior to starting actual test
 - long test runs to amortize start-up effects down
 - measure and subtract start-up costs

Deadlock Prevention and Avoidance

 system performance may degrade with age – reestablish base condition for each test

Measurement Artifact

- costs of instrumentation code
 - additional calls, instructions, cache misses
 - additional memory consumption and paging
- costs of logging results
 - may dwarf the costs of instrumentation
 - increased disk load/latency may slow everything
- make it run-time controllable option
- minimize file/network writes
 - in-memory circular buffer, reduce before writing

Deadlock, Prevention and Avoidance

Execution Profiling

42.9 0.0029 42.9 0.00 printit (profsample.c) 42.9 0.0029 85.7 0.01 add_vector (profsample.c) 14.3 0.0010 100.0 0.01 mult_by_scalar (profsample.c))
)
14.3 0.0010 100.0 0.01 mult_by_scalar (profsample.c)
% cumulative self self total time seconds seconds calls ms/call ms/call name	
% cumulative self self total	
ime seconds seconds calls ms/call ms/call name	
42.9 0.0029 0.0029 2200 0.0013 0.0013 printit	
42.9 0.0058 0.0029 20 0.1450 0.1450 add_vector	
0 0.0058 0.0000 1 main	
14.3 0.0068 0.0010 2 0.5000 1.2225 mult_by_scalar	

Dump of si	mple trace log			
date	time	event	sub-type	
05/11/06		packet rcv	 0x20749329	
	09:02:31.209301	packet route	0x20749329	
05/11/06	09:02:31.305208	wakeup	0x4D8C2042	
05/11/06	09:02:31.401106	read_packet	0x033C2DA0	
05/11/06	09:02:31.401223	read_packet	0x033C2DA0	
05/11/06	09:02:31.402110	sleep	0x4D8C2042	
05/11/06	09:02:31.614209	interrupt	0x0000003	
05/11/06	09:02:31.614209	dispatch	0x1B0324C0	
05/11/06	09:02:31.614210	intr_return	0x0000003	
05/11/06	09:02:31.652303	check_queue	0x2D3F2040	
05/11/06	09:02:31.652306	packet_rcv	0x20749329	

Operation	mean measured queue time	measured CPU % (ρ)	mean measured svc time (1/λ)	λρ²/(1-ρ
4K read	4.1µs	90%	478ns	4.3µs
4K write	2.0µs	88%	267ns	1.9µs
		aciaya Withini	iSER processir	BACIA

Principles

- The Pareto Principle - 80% of cycles are spent in 20% of the code
- We need real data
 - we can't optimize what we don't measure
 intuition often turns out to be wrong
- Performance demands eternal vigilance

 continuous measurement and comparison
 if we aren't getting faster, we're getting slower
- Performance is mostly about design

 code optimization is only occasionally useful

Design for Performance

- Establish performance requirements
- Anticipate bottlenecks
 - frequent operations (interrupts, copies, updates)
 - limiting resources (network/disk bandwidth)
 - traffic concentration points (resource locks)
- Design to minimize problems – eliminate, reduce use, add resources
- Include performance measurement in design – what will be measured, and how

ystem Testing and Performance

Assignments

- for the next lecture:
 - Arpaci ch 33-33.6 Asynchronous I/O
 - Arpaci ch 36 I/O Devices
 - Arpaci ch 37 Hard Disk Drives
 - Arpaci ch 38 Redundant Disk Arrays (RAID)
 - Device Drivers, Classes and Services
 - Dynamically Loadable Drivers

Deadlock, Prevention and Avoidance