Operating Systems Principles

Device I/0, Techniques & Frameworks

Mark Kampe

(markk@cs.ucla.edu)

5/9/2016

Final Project

¢ Value ... 10% of course grade (same as P1, P3)
* You have two options:
— OS research paper
 get topic approved by TA this or next week
— InternetOfThings embedded security project
« tell TA this week, check out Edison next week
* (draft) project descriptions on course calendar

web.cs.ucla.edu/classes/spring16/cs111/projects/Paper.html
web.cs.ucla.edu/classes/spring16/cs111/projects/Edison.html

Device I/0, Techniques & Frameworks

12A. Disks

12B. Low Level I/O Techniques
12C. Higher Level I/O Techniques
12D. Plug-in Driver Architectures

Disk Drives and Geometry

Spindle 10 heads
q —_
T

5 platters head
10 surfaces positioning
assembly

m sectors
otor

track

&
g

platter

surface

cylinder SSToo—o oI
(10 corresponding tracks)

(Disk drive geometry)

¢ spindle

— amounted assembly of circular platters
* head assembly

— read/write head per surface, all moving in unison
* track

— ring of data readable by one head in one position
e cylinder

— corresponding tracks on all platters
* sector

— logical records written within tracks
¢ disk address = <cylinder / head / sector >

Disks have Dominated File Systems

« fast swap, file system, database access
* minimize seek overhead
— organize file systems into cylinder clusters
— write-back caches and deep request queues
* minimize rotational latency delays
— maximum transfer sizes
— buffer data for full-track reads and writes
¢ we accepted poor latency in return for IOPS

Disk vs SSD Performance

Cheeta Barracuda Extreme/Pro
(archival) (high perf) (SSD)
RPM n/a

7,000 15,000
average latency 4.3ms 2ms n/a
average seek 9ms 4ms n/a
transfer speed 105MB/s 125MB/s 540MB/s
sequential 4KB read 39us 33us 10us
sequential 4KB write 39us 33us 11us
random 4KB read 13.2ms 6ms 10us
random 4KB write 13.2ms 6ms 11us

Device 1/0, Techniques and Frameworks

5/9/2016

Random Access: Game Over

Hard Disks vs NAND Flash

3 8000
HDD $/GB ——
SSD$IGB —— 7000
25 HDDGB ——
SSDGB —— 6000
@ 2 5000 @
@
Q g
£ 15 4000 2
8 g
5, 3000 §
2000
05
1000
0 0
2010 2011 2012 2013 2014 2015 2016 2017

year

Device 1/0, Techniques and Frameworks

The Changing 1/0 Landscape

¢ Storage paradigms
— old: swapping, paging, file systems, data bases
—new: NAS, distributed object/key-value stores
* 1/0 traffic
—old: most I/0 was disk 1/0
— new: network and video dominate many systems
¢ Performance goals:
— old: maximize throughput, IOPS
— new: low latency, scalability, reliability, availability

Device 1/0, Techniques and Frameworks

importance of good device utilization

* key system devices limit system performance
— file system 1/0, swapping, network communication
« if device sits idle, its throughput drops
— this may result in lower system throughput
— longer service queues, slower response times
¢ delays can disrupt real-time data flows
— resulting in unacceptable performance
— possible loss of irreplaceable data
e itis very important to keep key devices busy
— start request n+1 immediately when n finishes

ice 1/0, Techniques and Frameworks

Poor 1/0 device Utilization

yo e I (-
device susy . m
process BN O

process waits to run

process does computation in preparation for 1/0 operation
process issues read system call, blocks awaiting completion
device performs requested operation

completion interrupt awakens blocked process

process runs again, finishes read system call

process does more computation

© N O v s wNe

Process issues read system call, blocks awaiting completion

Device /0, Techniques and Framenworks his

Direct Memory Access

* bus facilitates data flow in all directions between

— CPU, memory, and device controllers
* CPU can be the bus-master

— initiating data transfers w/memory, device controllers
* device controllers can also master the bus

— CPU instructs controller what transfer is desired

* what data to move to/from what part of memory
— controller does transfer w/o CPU assistance
— controller generates interrupt at end of transfer

Device 1/0, Techniques and Frameworks

I/O Interrupts

* device controllers, busses, and interrupts
— busses have ability to send interrupts to the CPU
— devices signal controller when they are done/ready
— when device finishes, controller puts interrupt on bus
e CPUs and interrupts
— interrupts look very much like traps
* traps come from CPU, interrupts are caused externally
— unlike traps, interrupts can be enabled/disabled
* adevice can be told it can or cannot generate interrupts
* special instructions can enable/disable interrupts to CPU

« interrupt may be held pending until s/w is ready for it

Device 1/0, Techniques and Frameworks

5/9/2016

Interrupt Handling

Application Program

[instr; instr; instr; instr; instr; instr; |

A user mode
supervisor mode

device

PS/PC requests
interrupt
1%t |evel interrupt vector table
return to
user mode

interrupt handler

driver

list of device interrupt handlers

Device 1/, Techniques a

Keeping Key Devices Busy

¢ allow multiple requests pending at a time
— queue them, just like processes in the ready queue
— requesters block to await eventual completions

* use DMA to perform the actual data transfers
— data transferred, with no delay, at device speed
— minimal overhead imposed on CPU

* when the currently active request completes
— device controller generates a completion interrupt
— interrupt handler posts completion to requester
— interrupt handler selects and initiates next transfer

Interrupt Driven Chain Scheduled 1/0

xx_read/write() {
allocate a new request descriptor
fill in type, address, count, location
insert request into service queue
if (device is idle) {

xx_intr() {

extract completion info from controller

update completion info in current req
disable_device_interrupt(); wakeup current request

xx_start(); if (more requests in queue)
enable_device_interrupt(); xx_start()
else

await completion of request mark device idle
extract completion info for caller }

xx_start() {
get next request from queue
get address, count, disk address
load request parameters into controller
start the DMA operation
mark device busy

}

Device 1/, Techniques and Frameworks

Multi-Tasking & Interrupt Driven 1/O
device [NV S AU BT
process1 [CHW [
process 2 [[
process 3 \:l |:I |:I

1. P, runs, requests a read, and blocks 7. Awaken P, and start next read operation
2. P,runs, requests a read, and blocks 8. P, runs, requests a read, and blocks

3. Pyruns until interrupted 9. Py runs untilinterrupted

4. Awaken P, and start next read operation 10. Awaken P, and start next read operation
5. Pyruns, requests a read, and blocks 11. P, runs, requests a read, and blocks

6. Pyruns until interrupted

Device 1/0, Techniques and Frameworks 3,

throughput (VE/s)

Bigger Transfers are Better

PCle throughtput vs transfer size
1000

READ (PCle 3.0x8) ——
WRITE (FCle 30%8) ———

16 32 64 128 256 512 1024 2048 4096 8192
transfer size (bytes)

Device 1/0, Techniques and Frameworks

(Bigger Transfers are Better)

disks have high seek/rotation overheads
— larger transfers amortize down the cost/byte
« all transfers have per-operation overhead

— instructions to set up operation

— device time to start new operation

—time and cycles to service completion interrupt
e larger transfers have lower overhead/byte
— this is not limited to s/w implementations

Device 1/0, Techniques and Frameworks

5/9/2016

Input/Output Buffering

Fewer/larger transfers are more efficient

— they may not be convenient for applications

— natural record sizes tend to be relatively small
Operating system can buffer process I/0

— maintain a cache of recently used disk blocks
— accumulate small writes, flush out as blocks fill
— read whole blocks, deliver data as requested
Enables read-ahead

— OS reads/caches blocks not yet requested

device 1/0, Techniques and Frameworks 20

Deep Request Queues

¢ Having many I/O operations queued is good
— maintains high device utilization (little idle time)
—reduces mean seek distance/rotational delay
— may be possible to combine adjacent requests
* Ways to achieve deep queues:
— many processes making requests
—individual processes making parallel requests
— read-ahead for expected data requests
— write-back cache flushing

Device 1/0, Techniques and Frameworks

Double-Buffered Output

(double-buffered output)

¢ multiple buffers queued up, ready to write

— each write completion interrupt starts next write
* application and device I/O proceed in parallel

— application queues successive writes

* don’t bother waiting for previous operation to finish

— device picks up next buffer as soon as it is ready
« if we're CPU-bound (more CPU than output)

— application speeds up because it doesn't wait for 1/0
* if we're I/O-bound (more output than CPU)

— device is kept busy, which improves throughput

— but eventually we may have to block the process

Device 1/0, Techniques and Frameworks

Device 1/0, Technique Y
Double-Buffered Input
Device 1/0, Techniques and Frameworks Yo

(double buffered input)

¢ have multiple reads queued up, ready to go
— read completion interrupt starts read into next buffer

filled buffers wait until application asks for them

— application doesn't have to wait for data to be read

* when can we do chain-scheduled reads?

— each app will probably block until its read completes
* so we won’t get multiple reads from one application

— we can queue reads from multiple processes

— we can do predictive read-ahead

Device 1/0, Techniques and

5/9/2016

Scatter/Gather I/O

* many controllers support DMA transfers

— entire transfer must be contiguous in physical memory
¢ user buffers are in paged virtual memory

— user buffer may be spread all over physical memory

— scatter: read from device to multiple pages

— gather: writing from multiple pages to device
¢ three basic approaches apply

— copy all user data into contiguous physical buffer

— split logical req into chain-scheduled page requests

— 1/0 MMU may automatically handle scatter/gather

Device 1/0, Techniques an:

“gather” writes from paged memory

process virtual 1 userl/Q |
address space i ibufferi !

\ |

physical /

Famory i

/|

DMA I/O stream

“scatter” reads into paged memory

process virtual ! T
address space I ‘ ‘ | ¢ |

\

physical /

Famory i

DMA I/O stream

mechanisms: memory mapped |I/O

¢ DMA may not be the best way to do I/0
— designed for large contiguous transfers
— some devices have many small sparse transfers
* e.g. consider a video game display adaptor
¢ implement as a bit-mapped display adaptor
— 1Mpixel display controller, on the CPU memory bus
— each word of memory corresponds to one pixel
— application uses ordinary stores to update display
¢ low overhead per update, no interrupts to service

* relatively easy to program

Device 1/0, Techniques and Frameworks

Trade-off: memory mapped vs. DMA

* DMA performs large transfers efficiently
— better utilization of both the devices and the CPU
« device doesn't have to wait for CPU to do transfers
— but there is considerable per transfer overhead
* setting up the operation, processing completion interrupt

¢ memory-mapped I/O has no per-op overhead

— but every byte is transferred by a CPU instruction
* no waiting because device accepts data at memory speed

¢ DMA better for occasional large transfers
¢ memory-mapped better frequent small transfers
* memory-mapped devices more difficult to share

Device 1/0, Techniques and Frameworks

Smart Device Controller

1/0 completion interrupts

device 1/Oinstructions device
driver coptroller
buffer E
pointers p
T
normalinstructions) DMA

shared buffers (in memory)

(1/0 Mechanisms: smart controllers)

Smarter controlers can improve on basic DMA
they can queue multiple input/output requests
— when one finishes, automatically start next one

— reduce completion/start-up delays

— eliminate need for CPU to service interrupts

they can relieve CPU of other I/O responsibilities
— request scheduling to improve perormance

— they can do automatic error handling & retries

abstract away details of underlying devices

User-Mode Device Drivers

e why are drivers integrated into the OS
— they need to used (privileged) I/O instructions
— they need to service I/O interrupts
—they are trusted with multi-user data

* these reasons become less compelling
— memory mapped devices don’t need I/O instrs
— polled smart devices may not need interrupts
— privileged processes are trusted
— performance/robustness may be better

Data Striping for Bandwidth

initiator

ABC
initiator

(Data Striping for Bandwidth)

* spread requests across multiple targets
—increased aggregate throughput
— fewer operations per second per target

¢ used for many types of devices
— disk or server striping
— NIC bonding

¢ potential issues
— more/shorter requests may be less efficient
— source can generate many parallel requests
— target throughput is the bottleneck

Device 1/0, Techniques and Frameworks

Data Mirroring for Reliability

initiator

ABC
initiator

5/9/2016

(Data Mirroring for Reliability)

* mirror writes to multiple targets
—redundancy in case a target fails

— spread reads across multiple targets
« increased aggregate throughput, reduced ops/target

« used for all types of persistent storage
— disks, NAS, distributed key/value stores
* potential issues
— added write traffic on the source
— 2x-3x storage requirements on targets

Device 1/0, Techniques and Frameworks

5/9/2016

Parity/Erasure Coding for Efficiency

ABC F2(A,B,C)
initiator
F5(A,B,C)

ABC
initiator

(Parity/Erasure Coding for Efficiency)

¢ N out of M encoding (with M/N overhead)
—accumulate N writes from source
— compute M versions of that collection
—send a version to each of M targets

e Commonly used for archival storage

¢ Potential issues
— greatly increased source computational load
— deferred writes for parity block accumulation
— expensive updates, recovery (and EC reads)

Drivers — generalizing abstractions

¢ OS defines idealized device classes
— disk, display, printer, tape, network, serial ports
« classes define expected interfaces/behavior
—all drivers in class support standard methods
¢ device drivers implement standard behavior
— make diverse devices fit into a common mold
— protect applications from device eccentricities
¢ software analog to h/w device controllers
— device drivers connect a device controller to an 0S

Device Driver Interface (DDI)

standard (top-end) device driver entry-points
— basis for device independent applications
— enables system to exploit new devices
— a critical interface contract for 3rd party developers
* some correspond directly to system calls
— e.g. open, close, read, write
¢ some are associated w/OS frameworks
— disk drivers are meant to be called by block I/0
— network drivers are meant to be called by protocols

DDIs and sub-DDIls

Common DDI

Basic I/0

read, write,

Disk
request
revalidate
fsync

Life Cycle
initialize, cleanup
open, release

seek, ioctl,
select

Standard Driver Classes & Clients

file & directory direct device
operations access

| block 1/0
| | dewce|dr|ver|nterfa ces (* ddl)

Device /0, Techniques and Frameworks

S4ad
S4 XINN

5/9/2016

Drivers — simplifying abstractions

* encapsulate knowledge of how to use device

— map standard operations into operations on device

— map device states into standard object behavior

— hide irrelevant behavior from users

— correctly coordinate device and application behavior
* encapsulate knowledge of optimization

— efficiently perform standard operations on a device
¢ encapsulation of fault handling

— knowledge of how to handle recoverable faults

— prevent device faults from becoming OS faults

Device 1/0, Techniques and Frameworks

Kernel Services for device drivers

2 1/0, Technique

(Driver/Kernel Interface)

¢ (bottom-end) services OS provides to drivers
— analogous to an ABI for device driver writers
* must be very well-defined and stable
— to enable 3rd party driver writers to build drivers
— so old drivers continue to work on new OS versions
* each OS has its own DKI, but they are all similar
— memory allocation, data transfer and buffering
— 1/O resource (e.g. ports, interrupts) mgt, DMA
— synchronization, error reporting
— dynamic module support, configuration, plumbing

Device /0, Techniques and Frameworks

Criticality of Stable Interfaces

e Drivers are independent from the OS
— they are built by different organizations
—they are not co-packaged with the OS
¢ OS and drivers have interface dependencies
— OS depends on driver implementations of DDI
— drivers depends on kernel DKI implementations
¢ These interfaces must be carefully managed
— well defined and well tested
— upwards-compatible evolution

Device 1/0, Techniques and Frameworks

UNIX: special files

* how does one open an instance of a device

— like everything else, by opening some named file
* special files

— files that are associated with a device instance

— UNIX/LINUX uses <block/character, major, minor>

* major number corresponds to a particular device driver
* minor number identifies an instance under that driver

* opening special file opens the associated device

— open/close/read/write/etc calls map into calls to the
appropriate DDI entry-points of the selected driver

Device 1/0, Techniques and Frameworks

UNIX: device instances

* minor device # is an instance under a driver
— meaning of minor number is entirely driver-specific
¢ instances may be physically distinct
— e.g. different serial ports, different disk drives
¢ instances may refer to multiplexed sub-devices
— e.g. one of four FDISK partitions on a hard disk
— e.g. a sub-channel on a communications interface
* instances may merely select different options
— e.g. enable rewind-on-close for a tape drive
— e.g. different densities for diskettes

5/9/2016

Registering Dynamic Driver Instances

Device Interface Registry

class instance object

net |wlano —
attributes.
disk |cotop2 I methods

attributes.

disk |c0top1

display | svga0

attributes.

\/

SATA svga
entry points | | entry points

register(wlan0, net, wavelan-ops)

register(cOtOp1, disk, sata-ops)

wavelan

register(cOtOp2, disk, sata-ops) y[polits

svga
driver

register(svga0, display, svga-ops)
—

(driver instance/interface registration)

¢ driver must register each device instance
— register name, class, and instance # of device
— so programs will know that instance is available
¢ register driver methods for accessing that device
— driver advertises its entrypoints for all methods
* which methods depend on the class and driver
— enables other s/w to use device instance/call driver
¢ OSincludes services to register and un-register
— e.g. register_chrdev(major ID, minor ID, operations)
— create special file for accessing device instance ®

Assignments

¢ for the next lecture:
— File Formats (Wikipedia)
— Arpaci ch 39 ... Files and Directories
— Arpaci ch 40 ... File System Implementation
— FAT (DOS) file system format
— Object Stores (history, architecture)
— Key-Value Stores (introduction, types)
— FUSE (file systems in user mode)

