
5/9/2016

1

Operating Systems Principles

Device I/O, Techniques & Frameworks

Mark Kampe

(markk@cs.ucla.edu)

Final Project

• Value … 10% of course grade (same as P1, P3)

• You have two options:

– OS research paper

• get topic approved by TA this or next week

– InternetOfThings embedded security project

• tell TA this week, check out Edison next week

• (draft) project descriptions on course calendar

web.cs.ucla.edu/classes/spring16/cs111/projects/Paper.html

web.cs.ucla.edu/classes/spring16/cs111/projects/Edison.html

Device I/O, Techniques and Frameworks 2

Device I/O, Techniques & Frameworks

12A. Disks

12B. Low Level I/O Techniques

12C. Higher Level I/O Techniques

12D. Plug-in Driver Architectures

Device I/O, Techniques and Frameworks 3

Disk Drives and Geometry

4Device I/O, Techniques and Frameworks

Spindle

head
positioning
assembly

5 platters
10 surfaces

10 heads

Motor

0
1

8
9

cylinder
(10 corresponding tracks)

platter

surface

track

sectors

(Disk drive geometry)

• spindle

– a mounted assembly of circular platters

• head assembly

– read/write head per surface, all moving in unison

• track
– ring of data readable by one head in one position

• cylinder

– corresponding tracks on all platters

• sector

– logical records written within tracks

• disk address = <cylinder / head / sector >

5Device I/O, Techniques and Frameworks

Disks have Dominated File Systems

• fast swap, file system, database access

• minimize seek overhead

– organize file systems into cylinder clusters

– write-back caches and deep request queues

• minimize rotational latency delays

– maximum transfer sizes

– buffer data for full-track reads and writes

• we accepted poor latency in return for IOPS

6Device I/O, Techniques and Frameworks

5/9/2016

2

Disk vs SSD Performance

Cheeta

(archival)

Barracuda

(high perf)

Extreme/Pro

(SSD)

RPM 7,000 15,000 n/a

average latency 4.3ms 2ms n/a

average seek 9ms 4ms n/a

transfer speed 105MB/s 125MB/s 540MB/s

sequential 4KB read 39us 33us 10us

sequential 4KB write 39us 33us 11us

random 4KB read 13.2ms 6ms 10us

random 4KB write 13.2ms 6ms 11us

Device I/O, Techniques and Frameworks 7

Random Access: Game Over

8Device I/O, Techniques and Frameworks

The Changing I/O Landscape

• Storage paradigms

– old: swapping, paging, file systems, data bases

– new: NAS, distributed object/key-value stores

• I/O traffic

– old: most I/O was disk I/O

– new: network and video dominate many systems

• Performance goals:

– old: maximize throughput, IOPS

– new: low latency, scalability, reliability, availability

9Device I/O, Techniques and Frameworks

importance of good device utilization

• key system devices limit system performance

– file system I/O, swapping, network communication

• if device sits idle, its throughput drops

– this may result in lower system throughput

– longer service queues, slower response times

• delays can disrupt real-time data flows

– resulting in unacceptable performance

– possible loss of irreplaceable data

• it is very important to keep key devices busy

– start request n+1 immediately when n finishes

10Device I/O, Techniques and Frameworks

Poor I/O device Utilization

IDLE

BUSY

I/O

device

process

1. process waits to run

2. process does computation in preparation for I/O operation

3. process issues read system call, blocks awaiting completion

4. device performs requested operation

5. completion interrupt awakens blocked process

6. process runs again, finishes read system call

7. process does more computation

8. Process issues read system call, blocks awaiting completion

11Device I/O, Techniques and Frameworks

Direct Memory Access

• bus facilitates data flow in all directions between

– CPU, memory, and device controllers

• CPU can be the bus-master

– initiating data transfers w/memory, device controllers

• device controllers can also master the bus

– CPU instructs controller what transfer is desired

• what data to move to/from what part of memory

– controller does transfer w/o CPU assistance

– controller generates interrupt at end of transfer

12Device I/O, Techniques and Frameworks

5/9/2016

3

I/O Interrupts

• device controllers, busses, and interrupts

– busses have ability to send interrupts to the CPU

– devices signal controller when they are done/ready

– when device finishes, controller puts interrupt on bus

• CPUs and interrupts

– interrupts look very much like traps

• traps come from CPU, interrupts are caused externally

– unlike traps, interrupts can be enabled/disabled

• a device can be told it can or cannot generate interrupts

• special instructions can enable/disable interrupts to CPU

• interrupt may be held pending until s/w is ready for it

13Device I/O, Techniques and Frameworks

 Interrupt Handling

1st level
interrupt handler

2nd level handler
(device driver

interrupt routine)

return to
user mode

Application Program

user mode
supervisor modePS/PC

interrupt vector table

PS/PC
PS/PC
PS/PC

instr ; instr ; instr ; instr ; instr ; instr ;

driver
driver
driver
driver

list of device interrupt handlers

device
requests
interrupt

14Device I/O, Techniques and Frameworks

Keeping Key Devices Busy

• allow multiple requests pending at a time

– queue them, just like processes in the ready queue

– requesters block to await eventual completions

• use DMA to perform the actual data transfers

– data transferred, with no delay, at device speed

– minimal overhead imposed on CPU

• when the currently active request completes

– device controller generates a completion interrupt

– interrupt handler posts completion to requester

– interrupt handler selects and initiates next transfer

15Device I/O, Techniques and Frameworks

Interrupt Driven Chain Scheduled I/O

xx_read/write() {
allocate a new request descriptor
fill in type, address, count, location
insert request into service queue
if (device is idle) {

disable_device_interrupt();
xx_start();

enable_device_interrupt();
}
await completion of request
extract completion info for caller

}

xx_start() {
get next request from queue
get address, count, disk address
load request parameters into controller
start the DMA operation
mark device busy

}

xx_intr() {
extract completion info from controller
update completion info in current req
wakeup current request
if (more requests in queue)

xx_start()
else

mark device idle
}

16Device I/O, Techniques and Frameworks

Multi-Tasking & Interrupt Driven I/O
device 1A

process 1 1A

1. P1 runs, requests a read, and blocks

2. P2 runs, requests a read, and blocks

3. P3 runs until interrupted

4. Awaken P1 and start next read operation

5. P1 runs, requests a read, and blocks

6. P3 runs until interrupted

process 2

process 3

2A 1B 2B

1B 1C

2A 2B

7. Awaken P2 and start next read operation

8. P2 runs, requests a read, and blocks

9. P3 runs until interrupted

10. Awaken P1 and start next read operation

11. P1 runs, requests a read, and blocks

17Device I/O, Techniques and Frameworks

Bigger Transfers are Better

Device I/O, Techniques and Frameworks 18

5/9/2016

4

(Bigger Transfers are Better)

• disks have high seek/rotation overheads

– larger transfers amortize down the cost/byte

• all transfers have per-operation overhead

– instructions to set up operation

– device time to start new operation

– time and cycles to service completion interrupt

• larger transfers have lower overhead/byte

– this is not limited to s/w implementations

19Device I/O, Techniques and Frameworks

Input/Output Buffering

• Fewer/larger transfers are more efficient

– they may not be convenient for applications

– natural record sizes tend to be relatively small

• Operating system can buffer process I/O

– maintain a cache of recently used disk blocks

– accumulate small writes, flush out as blocks fill

– read whole blocks, deliver data as requested

• Enables read-ahead

– OS reads/caches blocks not yet requested

20Device I/O, Techniques and Frameworks

Deep Request Queues

• Having many I/O operations queued is good

– maintains high device utilization (little idle time)

– reduces mean seek distance/rotational delay

– may be possible to combine adjacent requests

• Ways to achieve deep queues:

– many processes making requests

– individual processes making parallel requests

– read-ahead for expected data requests

– write-back cache flushing

21Device I/O, Techniques and Frameworks

Double-Buffered Output

buffer

#1

buffer

#2

application

device

22Device I/O, Techniques and Frameworks

(double-buffered output)

• multiple buffers queued up, ready to write

– each write completion interrupt starts next write

• application and device I/O proceed in parallel

– application queues successive writes

• don’t bother waiting for previous operation to finish

– device picks up next buffer as soon as it is ready

• if we're CPU-bound (more CPU than output)

– application speeds up because it doesn't wait for I/O

• if we're I/O-bound (more output than CPU)

– device is kept busy, which improves throughput

– but eventually we may have to block the process

23Device I/O, Techniques and Frameworks

Double-Buffered Input

buffer

#1

buffer

#2

application

device

24Device I/O, Techniques and Frameworks

5/9/2016

5

(double buffered input)

• have multiple reads queued up, ready to go

– read completion interrupt starts read into next buffer

• filled buffers wait until application asks for them

– application doesn't have to wait for data to be read

• when can we do chain-scheduled reads?

– each app will probably block until its read completes

• so we won’t get multiple reads from one application

– we can queue reads from multiple processes

– we can do predictive read-ahead

25Device I/O, Techniques and Frameworks

Scatter/Gather I/O

• many controllers support DMA transfers

– entire transfer must be contiguous in physical memory

• user buffers are in paged virtual memory

– user buffer may be spread all over physical memory

– scatter: read from device to multiple pages

– gather: writing from multiple pages to device

• three basic approaches apply

– copy all user data into contiguous physical buffer

– split logical req into chain-scheduled page requests

– I/O MMU may automatically handle scatter/gather

26Device I/O, Techniques and Frameworks

“gather” writes from paged memory

process virtual
address space

physical
memory

DMA I/O stream

user I/O
buffer

27Device I/O, Techniques and Frameworks

“scatter” reads into paged memory

process virtual
address space

physical
memory

DMA I/O stream

user I/O
buffer

28Device I/O, Techniques and Frameworks

mechanisms: memory mapped I/O

• DMA may not be the best way to do I/O

– designed for large contiguous transfers

– some devices have many small sparse transfers

• e.g. consider a video game display adaptor

• implement as a bit-mapped display adaptor

– 1Mpixel display controller, on the CPU memory bus

– each word of memory corresponds to one pixel

– application uses ordinary stores to update display

• low overhead per update, no interrupts to service

• relatively easy to program

29Device I/O, Techniques and Frameworks

Trade-off: memory mapped vs. DMA

• DMA performs large transfers efficiently
– better utilization of both the devices and the CPU

• device doesn't have to wait for CPU to do transfers

– but there is considerable per transfer overhead
• setting up the operation, processing completion interrupt

• memory-mapped I/O has no per-op overhead
– but every byte is transferred by a CPU instruction

• no waiting because device accepts data at memory speed

• DMA better for occasional large transfers

• memory-mapped better frequent small transfers

• memory-mapped devices more difficult to share

30Device I/O, Techniques and Frameworks

5/9/2016

6

 Smart Device Controller

shared buffers (in memory)

buffer
pointers

I/O instructions

normal instructions DMA

I/O completion interrupts

device

driver

device

controller

basic status

basic status

memory ptr

31Device I/O, Techniques and Frameworks

(I/O Mechanisms: smart controllers)

• Smarter controlers can improve on basic DMA

• they can queue multiple input/output requests

– when one finishes, automatically start next one

– reduce completion/start-up delays

– eliminate need for CPU to service interrupts

• they can relieve CPU of other I/O responsibilities

– request scheduling to improve perormance

– they can do automatic error handling & retries

• abstract away details of underlying devices

32Device I/O, Techniques and Frameworks

User-Mode Device Drivers

• why are drivers integrated into the OS

– they need to used (privileged) I/O instructions

– they need to service I/O interrupts

– they are trusted with multi-user data

• these reasons become less compelling

– memory mapped devices don’t need I/O instrs

– polled smart devices may not need interrupts

– privileged processes are trusted

– performance/robustness may be better

Device I/O, Techniques and Frameworks 33

Data Striping for Bandwidth

34Device I/O, Techniques and Frameworks

initiator striping

target

target

target

A B C

A

B

C

initiator striping

target

target

target

A B C

A

B

C

(Data Striping for Bandwidth)

• spread requests across multiple targets

– increased aggregate throughput

– fewer operations per second per target

• used for many types of devices

– disk or server striping

– NIC bonding

• potential issues

– more/shorter requests may be less efficient

– source can generate many parallel requests

– target throughput is the bottleneck

35Device I/O, Techniques and Frameworks

Data Mirroring for Reliability

36Device I/O, Techniques and Frameworks

initiator mirror

target

target

target

A B C

A B C

initiator mirror

target

target

target

A B C

A

B

C

A B C

A B C

5/9/2016

7

(Data Mirroring for Reliability)

• mirror writes to multiple targets

– redundancy in case a target fails

– spread reads across multiple targets

• increased aggregate throughput, reduced ops/target

• used for all types of persistent storage

– disks, NAS, distributed key/value stores

• potential issues

– added write traffic on the source

– 2x-3x storage requirements on targets

37Device I/O, Techniques and Frameworks

Parity/Erasure Coding for Efficiency

38Device I/O, Techniques and Frameworks

initiator
parity

or E/C

target

target

target

A B C

F1(A,B,C)

F2(A,B,C)

F3(A,B,C)

initiator
parity

or E/C

target

target

target

A B C

F1(A,B,C)

F2(A,B,C)

(Parity/Erasure Coding for Efficiency)

39Device I/O, Techniques and Frameworks

• N out of M encoding (with M/N overhead)

– accumulate N writes from source

– compute M versions of that collection

– send a version to each of M targets

• Commonly used for archival storage

• Potential issues

– greatly increased source computational load

– deferred writes for parity block accumulation

– expensive updates, recovery (and EC reads)

Drivers – generalizing abstractions

• OS defines idealized device classes

– disk, display, printer, tape, network, serial ports

• classes define expected interfaces/behavior

– all drivers in class support standard methods

• device drivers implement standard behavior

– make diverse devices fit into a common mold

– protect applications from device eccentricities

• software analog to h/w device controllers

– device drivers connect a device controller to an OS

40Device I/O, Techniques and Frameworks

Device Driver Interface (DDI)

• standard (top-end) device driver entry-points

– basis for device independent applications

– enables system to exploit new devices

– a critical interface contract for 3rd party developers

• some correspond directly to system calls

– e.g. open, close, read, write

• some are associated w/OS frameworks

– disk drivers are meant to be called by block I/O

– network drivers are meant to be called by protocols

41Device I/O, Techniques and Frameworks

DDIs and sub-DDIs

Basic I/O

read, write,

seek, ioctl,

select

Life Cycle

initialize, cleanup

open, release

Common DDI

Disk

request

revalidate

fsync

Network

receive,

transmit

set MAC

stats

Serial

receive character

start write

line parms

42Device I/O, Techniques and Frameworks

5/9/2016

8

Standard Driver Classes & Clients

file & directory

operations

networking & IPC

operations

direct device

access

system calls

U
N

IX
 FS

D
O

S
 FS

C
D

 FS

block I/O

T
C

P
/IP

X
.2

5

P
P

P

data Link

provider

d
isp

la
y

 cla
ss

se
ria

l cla
ss

ta
p

e
 cla

ss

d
isk

 cla
ss

CD

drivers

disk

drivers

tape

drivers

display

drivers

serial

drivers

NIC

drivers

device driver interfaces (*-ddi)

A1

43Device I/O, Techniques and Frameworks

Drivers – simplifying abstractions

• encapsulate knowledge of how to use device

– map standard operations into operations on device

– map device states into standard object behavior

– hide irrelevant behavior from users

– correctly coordinate device and application behavior

• encapsulate knowledge of optimization

– efficiently perform standard operations on a device

• encapsulation of fault handling

– knowledge of how to handle recoverable faults

– prevent device faults from becoming OS faults

44Device I/O, Techniques and Frameworks

Kernel Services for device drivers

sub-class DDI

device driver

common DDI

memory

allocation

synchronization error reporting

run-time

loader

I/O resource

management

DMA

buffering

DKI – driver/kernel interface

configuration

45Device I/O, Techniques and Frameworks

(Driver/Kernel Interface)

• (bottom-end) services OS provides to drivers

– analogous to an ABI for device driver writers

• must be very well-defined and stable

– to enable 3rd party driver writers to build drivers

– so old drivers continue to work on new OS versions

• each OS has its own DKI, but they are all similar

– memory allocation, data transfer and buffering

– I/O resource (e.g. ports, interrupts) mgt, DMA

– synchronization, error reporting

– dynamic module support, configuration, plumbing

D1

46Device I/O, Techniques and Frameworks

Criticality of Stable Interfaces

• Drivers are independent from the OS

– they are built by different organizations

– they are not co-packaged with the OS

• OS and drivers have interface dependencies

– OS depends on driver implementations of DDI

– drivers depends on kernel DKI implementations

• These interfaces must be carefully managed

– well defined and well tested

– upwards-compatible evolution

Device I/O, Techniques and Frameworks 47

UNIX: special files

• how does one open an instance of a device

– like everything else, by opening some named file

• special files

– files that are associated with a device instance

– UNIX/LINUX uses <block/character, major, minor>

• major number corresponds to a particular device driver

• minor number identifies an instance under that driver

• opening special file opens the associated device

– open/close/read/write/etc calls map into calls to the

appropriate DDI entry-points of the selected driver

48Device I/O, Techniques and Frameworks

5/9/2016

9

UNIX: device instances

• minor device # is an instance under a driver

– meaning of minor number is entirely driver-specific

• instances may be physically distinct

– e.g. different serial ports, different disk drives

• instances may refer to multiplexed sub-devices

– e.g. one of four FDISK partitions on a hard disk

– e.g. a sub-channel on a communications interface

• instances may merely select different options

– e.g. enable rewind-on-close for a tape drive

– e.g. different densities for diskettes

B1

49Device I/O, Techniques and Frameworks

Registering Dynamic Driver Instances

wlan0

attributes

methods

svga0

attributes

methods

c0t0p1

attributes

methods
c0t0p2

attributes

methods

svga

entry points

svga

driver

wavelan

entry points

wavelan

driver

SATA

entry points

SATA

driver

Device Interface Registry

class instance object

net wlan0

disk c0t0p1

disk c0t0p2

display svga0

register(wlan0, net, wavelan-ops)

register(c0t0p1, disk, sata-ops)

register(c0t0p2, disk, sata-ops)

register(svga0, display, svga-ops)

50Device I/O, Techniques and Frameworks

(driver instance/interface registration)

• driver must register each device instance

– register name, class, and instance # of device

– so programs will know that instance is available

• register driver methods for accessing that device

– driver advertises its entrypoints for all methods

• which methods depend on the class and driver

– enables other s/w to use device instance/call driver

• OS includes services to register and un-register

– e.g. register_chrdev(major ID, minor ID, operations)

– create special file for accessing device instance E1

51Device I/O, Techniques and Frameworks

Assignments

• for the next lecture:

– File Formats (Wikipedia)

– Arpaci ch 39 … Files and Directories

– Arpaci ch 40 … File System Implementation

– FAT (DOS) file system format

– Object Stores (history, architecture)

– Key-Value Stores (introduction, types)

– FUSE (file systems in user mode)

Device I/O, Techniques and Frameworks 52

