
5/10/2016

1

Operating Systems Principles

File Systems: Semantics & Structure

Mark Kampe

(markk@cs.ucla.edu)

File Systems: Semantics & Structure

11A. File Semantics

11B. Namespace Semantics

11C. File Representation

11D. Free Space Representation

11E. Namespace Representation

11F. File System Integration

File Systems: Semantics and Structure 2

Sequential Byte Stream Access

int infd = open(“abc”, O_RDONLY);

int outfd = open(“xyz”, O_WRONLY+O_CREATE, 0666);

if (infd >= 0 && outfd >= 0) {

int count = read(infd, buf, sizeof buf);

while(count > 0) {

write(outfd, buf, count);

count = read(infd, inbuf, BUFSIZE);

}

close(infd);

close(outfd);

}

File Systems: Semantics and Structure 3

Random Access

void *readSection(int fd, struct hdr *index, int section) {

struct hdr *head = &hdr[section];

off_t offset = head->section_offset;

size_t len = head->section_length;

void *buf = malloc(len);

if (buf != NULL) {

lseek(fd, offset, SEEK_SET);

if (read(fd, buf, len) <= 0) {

free(buf);

buf = NULL;

}

}

return(buf);

}

File Systems: Semantics and Structure 4

Consistency Model

• When do new readers see results of a write?

– read-after-write

• as soon as possible, data-base semantics

• this commonly called “POSIX consistency”

– read-after-close (or sync/commit)

• only after writes are committed to storage

– open-after-close (or sync/commit)

• each open sees a consistent snapshot

– explicitly versioned files

• each open sees a named, consistent snapshot

File Systems: Semantics and Structure 5

File Attributes – basic properties

• thus far we have focused on a simple model

– a file is a "named collection of data blocks"

• in most OS files have more state than this

– file type (regular file, directory, device, IPC port, ...)

– file length (may be excess space at end of last block))

– ownership and protection information

– system attributes (e.g. hidden, archive)

– creation time, modification time, last accessed time

• typically stored in file descriptor structure

6File Systems: Semantics and Structure

5/10/2016

2

Extended File Types and Attributes

• extended protection information

– e.g. access control lists

• resource forks

– e.g. configuration data, fonts, related objects

• application defined types

– e.g. load modules, HTML, e-mail, MPEG, ...

• application defined properties

– e.g. compression scheme, encryption algorithm, ...

7File Systems: Semantics and Structure

File Names and Name Binding

• file system knows files by their descriptors

• users know files by names

– names more easily remembered than disk addresses

– names can be structured to organize millions of files

• file system responsible for name-to-file mapping

– associating names with new files

– changing names associated with existing files

– allowing users to search the name space

• there are many ways to structure a name space

8File Systems: Semantics and Structure

What is in a Name?

• suffixes and file types

– file-to-application binding often based on suffix

• defined by system configuration registry

• configured per user, or per directory

– suffix may define the file type (e.g. Windows)

– suffix may only be a hint (magic # defines type)

File Systems: Semantics and Structure 9

/home/mark/TODO.txt

base name

suffix

directory

separator

Flat Name Spaces

• there is one naming context per file system

– all file names must be unique within that context

• all files have exactly one true name

– these names are probably very long

• file names may have some structure

– e.g. CAC101.CS111.SECTION1.SLIDES.LECTURE_13

– this structure may be used to optimize searches

– the structure is very useful to users

– the structure has no meaning to the file system

10File Systems: Semantics and Structure

Hierarchical Namespaces

• directory

– a file containing references to other files

– it can be used as a naming context
• each process has a current working directory

• names are interpreted relative to directory

• nested directories can form a tree

– file name is a path through that tree

– directory tree expands from a root node

• fully qualified names begin from the root

– may actually form a directed graph

11File Systems: Semantics and Structure

A rooted directory tree

root

user_1 user_2 user_3

file_a

(/user_1/file_a)

file_b

(/user_2/file_b)

file_c

(/user_3/file_c)

dir_a

(/user_1/dir_a)

dir_a

(/user_3/dir_a)

file_a

(/user_1/dir_a/file_a)

file_b

(/user_3/dir_a/file_b)

12File Systems: Semantics and Structure

5/10/2016

3

Hard Links: example

root

user_1 user_3

dir_a file_c

file_a

file_b

Note that we now

associate names with

links rather than with

files.

/user_1/file_a and

/user_3/dir_a/file_b

are both links to the

same I-node

13File Systems: Semantics and Structure

Unix-style Hard Links

• all protection information is stored in the file

– file owner sets file protection (e.g. read-only)

– all links provide the same access to the file

– anyone with read access to file can create new link

– but directories are protected files too

• not everyone has read or search access to every directory

• all links are equal

– there is nothing special about the owner‘s link

– file is not deleted until no links remain to file

– reference count keeps track of references

14File Systems: Semantics and Structure

Symbolic Links: example

root

user_1 user_3

dir_a file_c

file_a

file_b

(/user_1/file_a)

15File Systems: Semantics and Structure

Symbolic Links

• another type of special file

– an indirect reference to some other file

– contents is a path name to another file

• Operating System recognizes symbolic links

– automatically opens associated file instead

– if file is inaccessible or non-existent, the open fails

• symbolic link is not a reference to the I-node

– symbolic links will not prevent deletion

– do not guarantee ability to follow the specified path

– Internet URLs are similar to symbolic links

16File Systems: Semantics and Structure

Databases

• a tool managing business critical data

• table is equivalent of a file system

• data organized in rows and columns

– row indexed by unique key

– columns are named fields within each row

• support a rich set of operations

– multi-object, read/modify/write transactions

– SQL searches return consistent snapshots

– insert/delete row/column operations

File Systems: Semantics and Structure 17

Object Stores

• simplified file systems, cloud storage

– optimized for large but infrequent transfers

• bucket is equivalent of a file system

– a bucket contains named, versioned objects

• objects have long names in a flat name space

– object names are unique within a bucket

• an object is a blob of immutable bytes

– get … all or part of the object

– put … new version, there is no append/update

– delete

File Systems: Semantics and Structure 18

5/10/2016

4

Key-Value Stores

• smaller and faster than an SQL database

– optimized for frequent small transfers

• table is equivalent of a file system

– a table is a collection of key/value pairs

• keys have long names in a flat name space

– key names are unique within a table

• value is a (typically 64-64MB) string

– get/put (entire value)

– delete

File Systems: Semantics and Structure 19

File System Goals

• ensure the privacy and integrity of all files

• efficiently implement name-to-file binding

– find file associated with this name

– list the file names in this part of the name space

• efficiently manage data associated w/each file

– return data at offset X in file Y

– write data Z at offset X in file Y

• manage attributes associated w/each file

– what is the length of file Y

– change owner/protection of file Y to be X

File Systems: Semantics and Structure 20

File System Structure

• disk volumes are divided into fixed-sized blocks

– many sizes are used: 512, 1024, 2048, 4096, 8192 ...

• most of them will store user data

• some will store organizing “meta-data”

– description of the file system (e.g. layout and state)

– file control blocks to describe individual files

– lists of free blocks (not yet allocated to any file)

• all operating systems have such data structures

– different OS and FS often have very different goals

– these result in very different implementations

21File Systems: Semantics and Structure

Unix System 5 – Volume Structure

boot block

super

block

I-nodes

available

blocks

block 0

block 1

block 2

block size and number of I-nodes are

specified in super block

I-node #1 (traditionally) describes the

root directory

data blocks begin immediately after the

end of the I-nodes.

22File Systems: Semantics and Structure

File Descriptor Structures

• all file systems have file descriptor structures

• contain all info about file

– type (e.g. file, directory, pipe)

– ownership and protection

– size (in bytes)

– other attributes

– location of data blocks

• descriptor location/# is file’s true name

File Systems: Semantics and Structure 23

links

owner group

file size

last access time

last written time

last I-node update time

data block pointers

…

UNIX I-node

type protection

Unix I-nodes and block pointers

1st

2nd

10th

11th

1034th

1035th

...
...

...
2058th

2059th

...
...

Indirect blocks data blocks

1st

block pointers
(in I-node)

tripple double-Indirect

...

...

2nd

10th

11th

12th

13th

3rd

4th

5th

6th

7th

8th

9th

...
F1

24File Systems: Semantics and Structure

5/10/2016

5

(Unix I-node block mapping)

• I-node contains 13 block pointers

– first 10 point to first 10 blocks of file

– 11th points to an indirect block (e.g. 4k bytes = 1k blocks)

– 12th points to a double indirect block (w/1k indirect blocks)

– 13th points to a triple indirect block (w/1k double indirs)

• assuming 4k bytes per block and 4-bytes per pointer

– 10 direct blocks = 10 * 4K bytes = 40K bytes

– indirect block = 1K * 4K = 4M bytes

– double indirect = 1K * 4M = 4G bytes

– triple indirect = 1K * 4G = 4T bytes (finite, but large)

25File Systems: Semantics and Structure

I-nodes – performance

• I-node is in memory whenever file is open

• first ten blocks can be found with no I/O

• after that, we must read indirect blocks

– the real pointers are in the indirect blocks

– sequential file processing will keep referencing it

– block I/O will keep it in the buffer cache

• 1-3 extra I/O operations per thousand pages

– any block can be found with 3 or fewer reads

• index blocks can support "sparse" files

• block # width determines max file system size

26File Systems: Semantics and Structure

DOS FAT – Volume Structure

boot block

BIOS parameter

block (BPB)

File

Allocation

Table

(FAT)

cluster #1

(root directory)

cluster #2

…

block 0512

block 1512

block 2512

cluster size and FAT length are specified

in the BPB

data clusters begin immediately after

the end of the FAT

root directory begins in the first data

cluster

27File Systems: Semantics and Structure

Clusters in a DOS FAT File

directory entry

name: myfile.txt

length: 1500 bytes

1st cluster: 3

File Allocation Table

x1

2

3

4

5

6

x

0

5

-1

4

cluster #3

cluster #4

cluster #5

first 512 bytes of file

second 512 bytes of file

last 476 bytes of file

Each FAT entry

corresponds to a

cluster, and

contains the

number of the

next cluster.

-1 = End of File

0 = free cluster

28File Systems: Semantics and Structure

(DOS FAT File Systems – Overview)

• DOS file systems divide space into "clusters"

– cluster size (multiple of 512) fixed for each file system

– clusters are numbered 1 though N

• File control structure points to first cluster of file

• File Allocation Table (FAT), one entry per cluster

– has number of next cluster in file

– 0 -> cluster is not allocated

– -1 -> end of file

29File Systems: Semantics and Structure

FAT – Performance/Capabilities

• to find a particular block of a file

– get number of first cluster from directory entry

– follow chain of pointers through FAT

• entire File Allocation Table is kept in memory

– no disk I/O is required to find a cluster

– for very large files the search can still be long

• no support for "sparse" files

– if a file has a block n, it must have all blocks < n

• width of FAT determines max file system size

30File Systems: Semantics and Structure

5/10/2016

6

Free Space Maintenance

• file system manager manages the free space

• get/release chunk should be fast operations

– they are extremely frequent

– we'd like to avoid doing I/O as much as possible

• unlike memory, it matters what chunk we choose

– best to allocate new space in same cylinder as file

– user may ask for contiguous storage

• free-list organization must address both concerns

– speed of allocation and de-allocation

– ability to allocate contiguous or near-by space

31File Systems: Semantics and Structure

FFS Cylinder Groups & Free Space

I-nodes data blocks

file system &

cylinder group

parameters

free block

bit-map

free I-node

bit-map

…

cylinders

cylinder

groups

0 100 200 300 400

32File Systems: Semantics and Structure

Bit Map Free Lists

block #1

(in use)

block #2

(in use)

block #3

(free)

block #4

(in use)

block #5

(free)

block #6

(free)

free block bit map: one bit per block

10 0 0 1 1 …

actual data blocks

BSD file systems use bit-maps to keep track

of both free blocks and free I-nodes in each

cylinder group

33File Systems: Semantics and Structure

(BSD UNIX free space bit-maps)

• file system divided into cylinder groups

– each cylinder group has its own cyl group summary

– active cyl group summaries are kept in memory

– each cylinder group has its own i-nodes and blocks

– free block list is a bit-map in cyl group summary

• enables significant reductions in head motion

– data blocks in file can be allocated in same cylinder

– I-node and its data blocks in same cylinder group

– directories and their files in same cylinder group

34File Systems: Semantics and Structure

Unix File Extension

1st

2nd

10th

11th

1034th

1035th

...
...

...
2058th

2059th

...
...

1st

block pointers
(in I-node)

...

...

2nd

10th

11th

12th

13th

3rd

4th

5th

6th

7th

8th

9th

...

C.G.

summary

free

I-node

map

free

block

map

35File Systems: Semantics and Structure

(Extending a BSD/UNIX file)

• note the cylinder group for the file's i-node

• note the cylinder for the previous block in the file

• find a free block in the desired cylinder

– search the free-block bit-map for free block in right cyl

– update bit-map to show the block has been allocated

• update the I-node to point to the new block

– go to appropriate block pointer in I-node/indirect

block

– if new indirect block is needed, allocate/assign it first

– update I-node/indirect to point to new block

36File Systems: Semantics and Structure

5/10/2016

7

UNIX Directories

user_19

file nameI-node #

user_231

user_3114

directory /user_3, I-node #114

dir_a

file_c

.1

..1

root directory, I-node #1

194

307

.114

..1

file nameI-node #

37File Systems: Semantics and Structure

(Example: UNIX Directories)

• file names separated by slashes

– e.g. /user_3/dir_a/file_b

• the actual file descriptors are the I-nodes

– directory entries only point to I-nodes

– association of a name with an I-node is called a "link"

– multiple directory entries can point to the same I-

node

• contents of a Unix directory entry

– name (relative to this directory)

– pointer to the I-node of the associated file

38File Systems: Semantics and Structure

Hard Links - example

user_19

user_231

user_3114

I-node #9, directory

dir_a

file_c

.1

..1

I-node #1, root directory

194

29

.114

..1

I-node #114, directory

dir_a

file_a

118

29

.9

..1

I-node #29, file

39File Systems: Semantics and Structure

Symbolic Links - example

user_19

user_231

user_3114

I-node #9, directory

dir_a

file_c

.1

..1

I-node #1, root directory

194

46

.114

..1

I-node #114, directory

dir_a

file_a

118

29

.9

..1

I-node #29, file

/user_1/file_a

I-node #46, symlink

40File Systems: Semantics and Structure

DOS Directories

user_1 256 bytes 9DIR …

root directory, starting in cluster #1

file name length 1st clustertype …

user_2 512 bytes 31DIR …

user_3 284 bytes 114DIR …

Directory /user_3, starting in cluster #114

file name length 1st clustertype …

.. 256 bytes 1DIR …

dir_a 512 bytes 62DIR …

file_c 1824 bytes 102FILE …

41File Systems: Semantics and Structure

(Example: DOS Directories)

• File & directory names separated by back-slashes

– e.g. \user_3\dir_a\file_b

• directory entries are the file descriptors

– as such, only one entry can refer to a particular file

• contents of a DOS directory entry

– name (relative to this directory)

– type (ordinary file, directory, ...)

– location of first cluster of file

– length of file in bytes

– other privacy and protection attributes

42File Systems: Semantics and Structure

5/10/2016

8

Unix File System Mounts

• goal

– make many file systems appear to be one giant

– users need not be aware of file system boundaries

• mechanism

– mount device on directory

– creates a warp from the named directory to the

top of the file system on the specified device

– any file name beneath that directory is interpreted

relative to the root of the mounted file system

43File Systems: Semantics and Structure

Unix - Mounted File Systems

file system 4file system 2 file system 3

root file system

/bin/opt/export

user1 user2

mount filesystem2 on /export/user1

mount filesystem3 on /export/user2

mount filesystem4 on /opt

44File Systems: Semantics and Structure

Files: Layers of implementation
system calls

U
N

IX
 FS

D
O

S
 FS

C
D

 FS

block I/O

CD

drivers

disk

drivers

diskette

drivers

device driver interfaces (disk-ddi)

flash

drivers

E
X

T
3

 FS

virtual file system integration layer

file

operations

directory

operations

file

I/O

device

I/O

socket

I/O

……

45File Systems: Semantics and Structure

Virtual File System (integration) Layer

• federation layer to generalize file systems

– permits rest of OS to treat all file systems as the same

– support dynamic addition of new file systems

• plug-in interface or file system implementations

– DOS FAT, Unix, EXT3, ISO 9660, network, etc.

– each file system implemented by a plug-in module

– all implement same basic methods

• create, delete, open, close, link, unlink,

• get/put block, get/set attributes, read directory, etc

• implementation is hidden from higher level clients

– all clients see are the standard methods and properties

46File Systems: Semantics and Structure

Assignments

• for the next lecture:

– Arpaci ch 41 … Fast File System (FFS)

– Arpaci ch 42 … FSCK and Journaling

– Arpaci ch 43 … Log Structured File Systems

– Arpaci ch 44.1-4 … Data Integrity and Protection

– Arpaci appx I6-10 … Flash based SSDs

– Arpaci ch 45 … Summary

File Systems: Semantics and Structure 47

Supplementary Slides

48File Systems: Semantics and Structure

5/10/2016

9

Compaction and Defragmentation

• file I/O is efficient if file extents are contiguous

– easy if free space is well distributed in large chunks

• with use the free space becomes fragmented

– and file I/O involves more head motion

• periodic in-place compaction and
defragmentation

– move the most popular files to the inner-most
cylinders

– copy all files into contiguous extents

– Leave the free-list with large contiguous extents

• has the potential to significantly speed up file I/O

49File Systems: Semantics and Structure

Open Files – Levels of Indirection

on-disk file descriptors
(UNIX struct dinode)

open-file references
(UNIX user file descriptor)
in process descriptor

I-node I-node I-node I-node I-node

I-node I-node I-node I-node

offset

options

I-node ptr

stdout
stderr

stdin
stdout
stderr

stdin
stdout
stderr

stdin

offset

options

I-node ptr

offset

options

I-node ptr

offset

options

I-node ptr

offset

options

I-node ptr

in-memory file descriptors
(UNIX struct inode)

open file instance
descriptors

B2

B1

50File Systems: Semantics and Structure

(Open Files – Levels of Indirection)

• open file references (UNIX user file descriptors)

– array to associate open file index numbers w/files

• open file descriptors (UNIX file structures)

– describes an open instance (session) of a file

• current offset, access (read/write), lock status

• in-memory file descriptors (UNIX I-nodes)

– copy of on-disk file description

• on-disk file descriptors (UNIX dinodes)

– file description (ownership, protection, etc)

– location (on disk) of the file's data

51File Systems: Semantics and Structure

Extending a File

• client requests new chunk be assigned to file

– may be an explicit allocation/extension request

– may be implicit (e.g. write to a non-existant block)

• find a free chunk of space

– traverse the free list to find an appropriate chunk

– remove the chosen chunk from the free list

• associate it with the appropriate address in the

file

– go to appropriate place in the file or extent descriptor

– update it to point to the newly allocated chunk

52File Systems: Semantics and Structure

Deleting a file

• release all the space that is allocated to the file

– UNIX, return each block to the free block list

– MVS, return each extent to the free chunk list

(coalescing adjacent extents where possible)

– DOS does not free space, it uses garbage collection

• deallocate the file control lock

– UNIX, zero i-node and return it to free list

– MVS, zero the format 1 DSCB in the VTOC

– DOS, zero first byte of the name in the parent
directory

(indicating that the directory entry is no longer in use)

53File Systems: Semantics and Structure

Block Device Drivers

• generalizing abstraction – make all disks look
same

• implement standard operations on their devices
– asynchronous read (physical block #, buffer,

bytecount)

– asynchronous write (physical block #, buffer,
bytecount)

• map logical block numbers to device addresses
– e.g. logical block number to <cylinder, head, sector>

• encapsulate all the particulars of device support
– I/O scheduling, initiation, completion, error handlings

– size and alignment limitations

A2

54File Systems: Semantics and Structure

5/10/2016

10

Device Independent Block I/O

• simplifying abstraction – better than generic disks

• an LRU buffer cache for disk data

– hold frequently used data until it is needed again

– hold pre-fetched read-ahead data until it is requested

• buffers for data re-blocking

– adapting file system block size to device block size

– adapting file system block size to user request sizes

• automatic buffer management

– allocation, deallocation

– automatic write-back of changed buffers

55File Systems: Semantics and Structure

File Systems

• file systems implemented on top of block I/O

– should be independent of underlying devices

• all file systems perform same basic functions

– map names to files

– map <file, offset> into <device, block>

– manage free space and allocate it to files

– create and destroy files

– get and set file attributes

– manipulate the file name space

• different implementations and options

56File Systems: Semantics and Structure

